Infection biomarkers at intensive care units
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.21/21761 |
Resumo: | It is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations. |
id |
RCAP_8a86bf5a70cf607598b1a046f95fb6e7 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/21761 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Infection biomarkers at intensive care unitsInfection biomarkersIntensive care unitCytokinesIt is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations.EARETDomingues, NunoTomar, Rajesh SinghMahamud, TosapornRCIPLAraújo, Rúben Alexandre DinisRamalhete, LuísHenrique Fonseca, Tiago AlexandreVon Rekowski, CristianaBento, LuísCalado, Cecília2025-04-07T08:22:55Z2024-122024-12-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.21/21761eng978-989-9121-43-010.17758/EARES19info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-09T02:16:10Zoai:repositorio.ipl.pt:10400.21/21761Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:21:23.577424Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Infection biomarkers at intensive care units |
title |
Infection biomarkers at intensive care units |
spellingShingle |
Infection biomarkers at intensive care units Araújo, Rúben Alexandre Dinis Infection biomarkers Intensive care unit Cytokines |
title_short |
Infection biomarkers at intensive care units |
title_full |
Infection biomarkers at intensive care units |
title_fullStr |
Infection biomarkers at intensive care units |
title_full_unstemmed |
Infection biomarkers at intensive care units |
title_sort |
Infection biomarkers at intensive care units |
author |
Araújo, Rúben Alexandre Dinis |
author_facet |
Araújo, Rúben Alexandre Dinis Ramalhete, Luís Henrique Fonseca, Tiago Alexandre Von Rekowski, Cristiana Bento, Luís Calado, Cecília |
author_role |
author |
author2 |
Ramalhete, Luís Henrique Fonseca, Tiago Alexandre Von Rekowski, Cristiana Bento, Luís Calado, Cecília |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Domingues, Nuno Tomar, Rajesh Singh Mahamud, Tosaporn RCIPL |
dc.contributor.author.fl_str_mv |
Araújo, Rúben Alexandre Dinis Ramalhete, Luís Henrique Fonseca, Tiago Alexandre Von Rekowski, Cristiana Bento, Luís Calado, Cecília |
dc.subject.por.fl_str_mv |
Infection biomarkers Intensive care unit Cytokines |
topic |
Infection biomarkers Intensive care unit Cytokines |
description |
It is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 2024-12-01T00:00:00Z 2025-04-07T08:22:55Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/21761 |
url |
http://hdl.handle.net/10400.21/21761 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-989-9121-43-0 10.17758/EARES19 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EARET |
publisher.none.fl_str_mv |
EARET |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602662283608064 |