Infection biomarkers at intensive care units

Bibliographic Details
Main Author: Araújo, Rúben Alexandre Dinis
Publication Date: 2024
Other Authors: Ramalhete, Luís, Henrique Fonseca, Tiago Alexandre, Von Rekowski, Cristiana, Bento, Luís, Calado, Cecília
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.21/21761
Summary: It is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations.
id RCAP_8a86bf5a70cf607598b1a046f95fb6e7
oai_identifier_str oai:repositorio.ipl.pt:10400.21/21761
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Infection biomarkers at intensive care unitsInfection biomarkersIntensive care unitCytokinesIt is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations.EARETDomingues, NunoTomar, Rajesh SinghMahamud, TosapornRCIPLAraújo, Rúben Alexandre DinisRamalhete, LuísHenrique Fonseca, Tiago AlexandreVon Rekowski, CristianaBento, LuísCalado, Cecília2025-04-07T08:22:55Z2024-122024-12-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.21/21761eng978-989-9121-43-010.17758/EARES19info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-09T02:16:10Zoai:repositorio.ipl.pt:10400.21/21761Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:21:23.577424Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Infection biomarkers at intensive care units
title Infection biomarkers at intensive care units
spellingShingle Infection biomarkers at intensive care units
Araújo, Rúben Alexandre Dinis
Infection biomarkers
Intensive care unit
Cytokines
title_short Infection biomarkers at intensive care units
title_full Infection biomarkers at intensive care units
title_fullStr Infection biomarkers at intensive care units
title_full_unstemmed Infection biomarkers at intensive care units
title_sort Infection biomarkers at intensive care units
author Araújo, Rúben Alexandre Dinis
author_facet Araújo, Rúben Alexandre Dinis
Ramalhete, Luís
Henrique Fonseca, Tiago Alexandre
Von Rekowski, Cristiana
Bento, Luís
Calado, Cecília
author_role author
author2 Ramalhete, Luís
Henrique Fonseca, Tiago Alexandre
Von Rekowski, Cristiana
Bento, Luís
Calado, Cecília
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Domingues, Nuno
Tomar, Rajesh Singh
Mahamud, Tosaporn
RCIPL
dc.contributor.author.fl_str_mv Araújo, Rúben Alexandre Dinis
Ramalhete, Luís
Henrique Fonseca, Tiago Alexandre
Von Rekowski, Cristiana
Bento, Luís
Calado, Cecília
dc.subject.por.fl_str_mv Infection biomarkers
Intensive care unit
Cytokines
topic Infection biomarkers
Intensive care unit
Cytokines
description It is relevant to discover infection biomarkers, especially for critically ill patients in intensive care units (ICU), as these patients often present non-infectious inflammatory processes that obscure typical infectious markers. This study focused on 20 ICU patients, half of whom had acquired bacterial blood infections (bacteremia). Due to the significance of inflammatory processes in these patients, it was evaluated how 21 serum cytokines could be used to develop predictive models for bacteremia. Feature selection using a Gain Information algorithm allowed for the construction of an excellent Naïve Bayes model, achieving an AUC of 0.950. These promising results strongly support future studies with larger cohorts, to further evaluate these types of platforms for infection diagnosis in such critical populations.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
2024-12-01T00:00:00Z
2025-04-07T08:22:55Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/21761
url http://hdl.handle.net/10400.21/21761
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-989-9121-43-0
10.17758/EARES19
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EARET
publisher.none.fl_str_mv EARET
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602662283608064