Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.14/38328 |
Resumo: | I provide a new monthly cross-sectional measure of stock market tail risk, SCSTR, defined as the average of the daily cross-sectional tail risk, rather than the tail risk of the pooled daily returns within a month. Through simulations, I find that SCSTR better captures monthly tail risk rather than merely the tail risk on specific days within a month. In an extended period from 1964 until 2018, this difference is important in generating strong in- and out-of-sample predictability and performs better than the historical risk premium and other commonly-used predictors for short- and long-term horizons. |
id |
RCAP_8a0d5eb1761f4e416da25d16de1b296c |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/38328 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlationEquity premiumPredictionCross-sectionalI provide a new monthly cross-sectional measure of stock market tail risk, SCSTR, defined as the average of the daily cross-sectional tail risk, rather than the tail risk of the pooled daily returns within a month. Through simulations, I find that SCSTR better captures monthly tail risk rather than merely the tail risk on specific days within a month. In an extended period from 1964 until 2018, this difference is important in generating strong in- and out-of-sample predictability and performs better than the historical risk premium and other commonly-used predictors for short- and long-term horizons.VeritatiFaias, José Afonso2022-07-21T12:55:01Z2023-03-012023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/38328eng1386-418110.1016/j.finmar.2022.100769info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T13:04:57Zoai:repositorio.ucp.pt:10400.14/38328Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:53:36.001517Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
title |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
spellingShingle |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation Faias, José Afonso Equity premium Prediction Cross-sectional |
title_short |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
title_full |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
title_fullStr |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
title_full_unstemmed |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
title_sort |
Predicting the equity risk premium using the smooth cross-sectional tail risk: the importance of correlation |
author |
Faias, José Afonso |
author_facet |
Faias, José Afonso |
author_role |
author |
dc.contributor.none.fl_str_mv |
Veritati |
dc.contributor.author.fl_str_mv |
Faias, José Afonso |
dc.subject.por.fl_str_mv |
Equity premium Prediction Cross-sectional |
topic |
Equity premium Prediction Cross-sectional |
description |
I provide a new monthly cross-sectional measure of stock market tail risk, SCSTR, defined as the average of the daily cross-sectional tail risk, rather than the tail risk of the pooled daily returns within a month. Through simulations, I find that SCSTR better captures monthly tail risk rather than merely the tail risk on specific days within a month. In an extended period from 1964 until 2018, this difference is important in generating strong in- and out-of-sample predictability and performs better than the historical risk premium and other commonly-used predictors for short- and long-term horizons. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-21T12:55:01Z 2023-03-01 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/38328 |
url |
http://hdl.handle.net/10400.14/38328 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1386-4181 10.1016/j.finmar.2022.100769 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833601160869576704 |