The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches
| Main Author: | |
|---|---|
| Publication Date: | 2008 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/9003 |
Summary: | The objective of the present study was to compare genetic and phenotypic variation of 103 Saccharomyces cerevisiae strains isolated from winemaking environments. We used bioinformatics approaches to identify genetically similary strains with specific phenotypes and to estimate a strain's biotechnological potential. A S. cerevisiae collection, comprising 440 strains that were obtained from winemaking environments in Portugal has been constituted during the last years. All strains were genetically characterized by a set of eleven highly polymorphic microsatellites and showed unique allelic combinations. Using neural networks, a subset of 103 genetically most diverse strains was chosen for phenotypic analysis, that included growth in synthetic must media at various temperatures, utilization of carbon sources (glucose, ribose, arabinose, xylose, saccharose, galactose, rafinose, maltose, glycerol, potassium acetate and pyruvic acid), growth in ethanol containing media, evaluation of osmotic and oxidative stress resistance, H2S production and utilization of different nitrogen sources. Using supervised data mining approaches we have found that genotype represented with presence/absence of eleven microsatellites relates well with geographical location (performance evaluation using leave-out-out technique resulted in high performance scores; e.g., area under ROC curve was above 0.8 for a number of standard machine learning approaches tested). To find relations between phenotypes and genotypes, we used a two-step approach which first hierarchically clusters the strains according to their phenotype, and then tests if the resulting sub-clusters are identifiable using strain’s genetic data. Several groups of strains with similar phenotype profiles and common features in genotype were identified this way, and they are subject to further investigations. |
| id |
RCAP_886d85c54b30f204cd7fa8efa022d68b |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/9003 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approachesSaccharomyces cerevisiaeMicrosatelliteSupervised data miningGenotypePhenotypeThe objective of the present study was to compare genetic and phenotypic variation of 103 Saccharomyces cerevisiae strains isolated from winemaking environments. We used bioinformatics approaches to identify genetically similary strains with specific phenotypes and to estimate a strain's biotechnological potential. A S. cerevisiae collection, comprising 440 strains that were obtained from winemaking environments in Portugal has been constituted during the last years. All strains were genetically characterized by a set of eleven highly polymorphic microsatellites and showed unique allelic combinations. Using neural networks, a subset of 103 genetically most diverse strains was chosen for phenotypic analysis, that included growth in synthetic must media at various temperatures, utilization of carbon sources (glucose, ribose, arabinose, xylose, saccharose, galactose, rafinose, maltose, glycerol, potassium acetate and pyruvic acid), growth in ethanol containing media, evaluation of osmotic and oxidative stress resistance, H2S production and utilization of different nitrogen sources. Using supervised data mining approaches we have found that genotype represented with presence/absence of eleven microsatellites relates well with geographical location (performance evaluation using leave-out-out technique resulted in high performance scores; e.g., area under ROC curve was above 0.8 for a number of standard machine learning approaches tested). To find relations between phenotypes and genotypes, we used a two-step approach which first hierarchically clusters the strains according to their phenotype, and then tests if the resulting sub-clusters are identifiable using strain’s genetic data. Several groups of strains with similar phenotype profiles and common features in genotype were identified this way, and they are subject to further investigations.Financially supported by the programs POCI 2010 (FEDER/FCT, POCI/AGR/56102/2004) and AGRO (ENOSAFE, Nº 762)Universidade do MinhoDuarte, Ricardo FrancoUmek, LanZupan, BlazSchuller, Dorit Elisabeth2008-102008-10-01T00:00:00Zconference posterinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/9003engWORKSHOP ON EVOLUTIONARY AND ENVIRONMENTAL GENOMICS OF YEASTS, Heidelberg, 2008 - “Workshop on Evolutionary and Environmental Genomics of Yeasts”. [S.l. : s. n., 2008].info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:56:33Zoai:repositorium.sdum.uminho.pt:1822/9003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:35:35.319014Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| title |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| spellingShingle |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches Duarte, Ricardo Franco Saccharomyces cerevisiae Microsatellite Supervised data mining Genotype Phenotype |
| title_short |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| title_full |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| title_fullStr |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| title_full_unstemmed |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| title_sort |
The genetic and phenotypic characterization of a saccharomyces cerevisiae wine yeast collection using bioinformatic approaches |
| author |
Duarte, Ricardo Franco |
| author_facet |
Duarte, Ricardo Franco Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| author_role |
author |
| author2 |
Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Duarte, Ricardo Franco Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| dc.subject.por.fl_str_mv |
Saccharomyces cerevisiae Microsatellite Supervised data mining Genotype Phenotype |
| topic |
Saccharomyces cerevisiae Microsatellite Supervised data mining Genotype Phenotype |
| description |
The objective of the present study was to compare genetic and phenotypic variation of 103 Saccharomyces cerevisiae strains isolated from winemaking environments. We used bioinformatics approaches to identify genetically similary strains with specific phenotypes and to estimate a strain's biotechnological potential. A S. cerevisiae collection, comprising 440 strains that were obtained from winemaking environments in Portugal has been constituted during the last years. All strains were genetically characterized by a set of eleven highly polymorphic microsatellites and showed unique allelic combinations. Using neural networks, a subset of 103 genetically most diverse strains was chosen for phenotypic analysis, that included growth in synthetic must media at various temperatures, utilization of carbon sources (glucose, ribose, arabinose, xylose, saccharose, galactose, rafinose, maltose, glycerol, potassium acetate and pyruvic acid), growth in ethanol containing media, evaluation of osmotic and oxidative stress resistance, H2S production and utilization of different nitrogen sources. Using supervised data mining approaches we have found that genotype represented with presence/absence of eleven microsatellites relates well with geographical location (performance evaluation using leave-out-out technique resulted in high performance scores; e.g., area under ROC curve was above 0.8 for a number of standard machine learning approaches tested). To find relations between phenotypes and genotypes, we used a two-step approach which first hierarchically clusters the strains according to their phenotype, and then tests if the resulting sub-clusters are identifiable using strain’s genetic data. Several groups of strains with similar phenotype profiles and common features in genotype were identified this way, and they are subject to further investigations. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-10 2008-10-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference poster |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/9003 |
| url |
http://hdl.handle.net/1822/9003 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
WORKSHOP ON EVOLUTIONARY AND ENVIRONMENTAL GENOMICS OF YEASTS, Heidelberg, 2008 - “Workshop on Evolutionary and Environmental Genomics of Yeasts”. [S.l. : s. n., 2008]. |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595412163854336 |