Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection
| Main Author: | |
|---|---|
| Publication Date: | 2008 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/8893 |
Summary: | Painel apresentado por D. Schuller |
| id |
RCAP_7baa5e4ea627f1e44d9cb0a6137309cd |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/8893 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collectionSaccharomyces cerevisiaeStrain collectionMicrosatellitePhenotypic diversityGenetic diversityMachine learningPainel apresentado por D. SchullerThe objective of the present study was to compare genetic and phenotypic variation of 103 Saccharomyces cerevisiae strains isolated from winemaking environments. We used bioinformatics approaches to identify genetically similary strains with specific phenotypes and to estimate a strain's biotechnological potential. A S. cerevisiae collection, comprising 440 strains that were obtained from winemaking environments in Portugal has been constituted during the last years. All strains were genetically characterized by a set of eleven highly polymorphic microsatellites and showed unique allelic combinations. Using neural networks, a subset of 103 genetically most diverse strains was chosen for phenotypic analysis, that included growth in synthetic must media at various temperatures, utilization of carbon sources (glucose, ribose, arabinose, xylose, saccharose, galactose, rafinose, maltose, glycerol, potassium acetate and pyruvic acid), growth in ethanol containing media, evaluation of osmotic and oxidative stress resistance, H2S production and utilization of different nitrogen sources. Using supervised data mining approaches we have found that genotype represented with presence/absence of eleven microsatellites relates well with geographical location (performance evaluation using leave-out-out technique resulted in high performance scores; e.g., area under ROC curve was above 0.8 for a number of standard machine learning approaches tested). To find relations between phenotypes and genotypes, we used a two-step approach which first hierarchically clusters the strains according to their phenotype, and then tests if the resulting sub-clusters are identifiable using strain’s genetic data. Several groups of strains with similar phenotype profiles and common features in genotype were identified this way, and they are subject to further investigations.Programa POCI 2010 (FEDER/FCT, POCTI/AGR/56102/2004) e AGRO (ENOSAFE, N.º 762).Universidade do MinhoDuarte, Ricardo FrancoUmek, LanZupan, BlazSchuller, Dorit Elisabeth2008-082008-08-01T00:00:00Zconference posterinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/8893engINTERNATIONAL CONGRESS ON YEASTS, 12, Kiev, 2008 - "ICY 2008". [S.l. : s.n., 2008].info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:50:09Zoai:repositorium.sdum.uminho.pt:1822/8893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:05:57.944054Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| title |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| spellingShingle |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection Duarte, Ricardo Franco Saccharomyces cerevisiae Strain collection Microsatellite Phenotypic diversity Genetic diversity Machine learning |
| title_short |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| title_full |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| title_fullStr |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| title_full_unstemmed |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| title_sort |
Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection |
| author |
Duarte, Ricardo Franco |
| author_facet |
Duarte, Ricardo Franco Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| author_role |
author |
| author2 |
Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Duarte, Ricardo Franco Umek, Lan Zupan, Blaz Schuller, Dorit Elisabeth |
| dc.subject.por.fl_str_mv |
Saccharomyces cerevisiae Strain collection Microsatellite Phenotypic diversity Genetic diversity Machine learning |
| topic |
Saccharomyces cerevisiae Strain collection Microsatellite Phenotypic diversity Genetic diversity Machine learning |
| description |
Painel apresentado por D. Schuller |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-08 2008-08-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference poster |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/8893 |
| url |
http://hdl.handle.net/1822/8893 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
INTERNATIONAL CONGRESS ON YEASTS, 12, Kiev, 2008 - "ICY 2008". [S.l. : s.n., 2008]. |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595735805788160 |