Lossless compression of images with specific characteristics

Bibliographic Details
Main Author: Neves, António José Ribeiro
Publication Date: 2007
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/2210
Summary: A compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.
id RCAP_812fa37f58426ae686ec8f32f1d7334b
oai_identifier_str oai:ria.ua.pt:10773/2210
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Lossless compression of images with specific characteristicsEngenharia electrotécnicaCompressão de imagemProcessamento de sinalCodificação de imagemA compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.The compression of some types of images is a challenge for some standard compression techniques. This thesis investigates the lossless compression of images with specific characteristics, namely simple images, color-indexed images and microarray images. We are interested in the development of complete compression methods and in the study of preprocessing algorithms that could be used together with standard compression methods. The histogram sparseness, a property of simple images, is addressed in this thesis. We developed a preprocessing technique, denoted histogram packing, that explores this property and can be used with standard compression methods for improving significantly their efficiency. Histogram packing and palette reordering algorithms can be used as a preprocessing step for improving the lossless compression of color-indexed images. This thesis presents several algorithms and a comprehensive study of the already existing methods. Specific compression methods, such as binary tree decomposition, are also addressed. The use of microarray expression data in state-of-the-art biology has been well established and due to the significant volume of data generated per experiment, efficient lossless compression methods are needed. In this thesis, we explore the use of standard image coding techniques and we present new algorithms to efficiently compress this type of images, based on finite-context modeling and arithmetic coding.Universidade de Aveiro2011-04-19T13:54:24Z2007-01-01T00:00:00Z2007doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/2210TID:101155107engNeves, António José Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:29:24Zoai:ria.ua.pt:10773/2210Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:36:20.354698Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Lossless compression of images with specific characteristics
title Lossless compression of images with specific characteristics
spellingShingle Lossless compression of images with specific characteristics
Neves, António José Ribeiro
Engenharia electrotécnica
Compressão de imagem
Processamento de sinal
Codificação de imagem
title_short Lossless compression of images with specific characteristics
title_full Lossless compression of images with specific characteristics
title_fullStr Lossless compression of images with specific characteristics
title_full_unstemmed Lossless compression of images with specific characteristics
title_sort Lossless compression of images with specific characteristics
author Neves, António José Ribeiro
author_facet Neves, António José Ribeiro
author_role author
dc.contributor.author.fl_str_mv Neves, António José Ribeiro
dc.subject.por.fl_str_mv Engenharia electrotécnica
Compressão de imagem
Processamento de sinal
Codificação de imagem
topic Engenharia electrotécnica
Compressão de imagem
Processamento de sinal
Codificação de imagem
description A compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01T00:00:00Z
2007
2011-04-19T13:54:24Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/2210
TID:101155107
url http://hdl.handle.net/10773/2210
identifier_str_mv TID:101155107
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833593918545985536