Leveraging customer segmentation on hotel loyalty programs with data mining
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/104412 |
Summary: | This study aims to provide a new customer segmentation solution for hotels’ loyalty programs using a data mining approach forclassifying the customers into segments through clustering processes.Mainfindings suggest somehigh tier members are not as valuable as lower tier ones, there are groups of clients with distinct brand preferences, stay duration anddestination patterns which are not being correctly grouped due to tier segmentation andthatloyalty programs are not equally suitable for all brands within a hotel group, therefore additional levels of segmentation would be appropriate to match the distinct guests’behaviorand value. |
id |
RCAP_76da4c22c77f93323e6890f52f7c2b7d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/104412 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Leveraging customer segmentation on hotel loyalty programs with data miningLoyaltyHotel loyalty programsData miningCustomer segmentationClusteringK-meansDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis study aims to provide a new customer segmentation solution for hotels’ loyalty programs using a data mining approach forclassifying the customers into segments through clustering processes.Mainfindings suggest somehigh tier members are not as valuable as lower tier ones, there are groups of clients with distinct brand preferences, stay duration anddestination patterns which are not being correctly grouped due to tier segmentation andthatloyalty programs are not equally suitable for all brands within a hotel group, therefore additional levels of segmentation would be appropriate to match the distinct guests’behaviorand value.Rita, PauloCardoso, ElizabeteRUNCaetano, Joana Maria Pereira Lupi2020-09-21T10:03:14Z2020-01-072019-11-282020-01-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/104412TID:202492460enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:47:39Zoai:run.unl.pt:10362/104412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:18:48.573174Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Leveraging customer segmentation on hotel loyalty programs with data mining |
title |
Leveraging customer segmentation on hotel loyalty programs with data mining |
spellingShingle |
Leveraging customer segmentation on hotel loyalty programs with data mining Caetano, Joana Maria Pereira Lupi Loyalty Hotel loyalty programs Data mining Customer segmentation Clustering K-means Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Leveraging customer segmentation on hotel loyalty programs with data mining |
title_full |
Leveraging customer segmentation on hotel loyalty programs with data mining |
title_fullStr |
Leveraging customer segmentation on hotel loyalty programs with data mining |
title_full_unstemmed |
Leveraging customer segmentation on hotel loyalty programs with data mining |
title_sort |
Leveraging customer segmentation on hotel loyalty programs with data mining |
author |
Caetano, Joana Maria Pereira Lupi |
author_facet |
Caetano, Joana Maria Pereira Lupi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rita, Paulo Cardoso, Elizabete RUN |
dc.contributor.author.fl_str_mv |
Caetano, Joana Maria Pereira Lupi |
dc.subject.por.fl_str_mv |
Loyalty Hotel loyalty programs Data mining Customer segmentation Clustering K-means Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Loyalty Hotel loyalty programs Data mining Customer segmentation Clustering K-means Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This study aims to provide a new customer segmentation solution for hotels’ loyalty programs using a data mining approach forclassifying the customers into segments through clustering processes.Mainfindings suggest somehigh tier members are not as valuable as lower tier ones, there are groups of clients with distinct brand preferences, stay duration anddestination patterns which are not being correctly grouped due to tier segmentation andthatloyalty programs are not equally suitable for all brands within a hotel group, therefore additional levels of segmentation would be appropriate to match the distinct guests’behaviorand value. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-28 2020-09-21T10:03:14Z 2020-01-07 2020-01-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/104412 TID:202492460 |
url |
http://hdl.handle.net/10362/104412 |
identifier_str_mv |
TID:202492460 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596604303540224 |