On invariant Rings of Sylow subgroups of finite classical groups
Main Author: | |
---|---|
Publication Date: | 2011 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.13/177 |
Summary: | In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups. |
id |
RCAP_740a222a4ac7e4ca48bb862bd81ee7c0 |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/177 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On invariant Rings of Sylow subgroups of finite classical groupsModular invariant theoryFinite classical groupsp-GroupsInvariant fieldsInvariant ringsSAGBI BasesComplete Intersections.In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.University of KentPeter FleischmannDigitUMaFerreira, Jorge Nélio Marques2011-10-12T13:39:14Z20112011-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.13/177enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T17:05:17Zoai:digituma.uma.pt:10400.13/177Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:46:55.490619Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On invariant Rings of Sylow subgroups of finite classical groups |
title |
On invariant Rings of Sylow subgroups of finite classical groups |
spellingShingle |
On invariant Rings of Sylow subgroups of finite classical groups Ferreira, Jorge Nélio Marques Modular invariant theory Finite classical groups p-Groups Invariant fields Invariant rings SAGBI Bases Complete Intersections . |
title_short |
On invariant Rings of Sylow subgroups of finite classical groups |
title_full |
On invariant Rings of Sylow subgroups of finite classical groups |
title_fullStr |
On invariant Rings of Sylow subgroups of finite classical groups |
title_full_unstemmed |
On invariant Rings of Sylow subgroups of finite classical groups |
title_sort |
On invariant Rings of Sylow subgroups of finite classical groups |
author |
Ferreira, Jorge Nélio Marques |
author_facet |
Ferreira, Jorge Nélio Marques |
author_role |
author |
dc.contributor.none.fl_str_mv |
Peter Fleischmann DigitUMa |
dc.contributor.author.fl_str_mv |
Ferreira, Jorge Nélio Marques |
dc.subject.por.fl_str_mv |
Modular invariant theory Finite classical groups p-Groups Invariant fields Invariant rings SAGBI Bases Complete Intersections . |
topic |
Modular invariant theory Finite classical groups p-Groups Invariant fields Invariant rings SAGBI Bases Complete Intersections . |
description |
In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10-12T13:39:14Z 2011 2011-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/177 |
url |
http://hdl.handle.net/10400.13/177 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
University of Kent |
publisher.none.fl_str_mv |
University of Kent |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598862351138816 |