On invariant Rings of Sylow subgroups of finite classical groups

Bibliographic Details
Main Author: Ferreira, Jorge Nélio Marques
Publication Date: 2011
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.13/177
Summary: In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.
id RCAP_740a222a4ac7e4ca48bb862bd81ee7c0
oai_identifier_str oai:digituma.uma.pt:10400.13/177
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On invariant Rings of Sylow subgroups of finite classical groupsModular invariant theoryFinite classical groupsp-GroupsInvariant fieldsInvariant ringsSAGBI BasesComplete Intersections.In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.University of KentPeter FleischmannDigitUMaFerreira, Jorge Nélio Marques2011-10-12T13:39:14Z20112011-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.13/177enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T17:05:17Zoai:digituma.uma.pt:10400.13/177Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:46:55.490619Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On invariant Rings of Sylow subgroups of finite classical groups
title On invariant Rings of Sylow subgroups of finite classical groups
spellingShingle On invariant Rings of Sylow subgroups of finite classical groups
Ferreira, Jorge Nélio Marques
Modular invariant theory
Finite classical groups
p-Groups
Invariant fields
Invariant rings
SAGBI Bases
Complete Intersections
.
title_short On invariant Rings of Sylow subgroups of finite classical groups
title_full On invariant Rings of Sylow subgroups of finite classical groups
title_fullStr On invariant Rings of Sylow subgroups of finite classical groups
title_full_unstemmed On invariant Rings of Sylow subgroups of finite classical groups
title_sort On invariant Rings of Sylow subgroups of finite classical groups
author Ferreira, Jorge Nélio Marques
author_facet Ferreira, Jorge Nélio Marques
author_role author
dc.contributor.none.fl_str_mv Peter Fleischmann
DigitUMa
dc.contributor.author.fl_str_mv Ferreira, Jorge Nélio Marques
dc.subject.por.fl_str_mv Modular invariant theory
Finite classical groups
p-Groups
Invariant fields
Invariant rings
SAGBI Bases
Complete Intersections
.
topic Modular invariant theory
Finite classical groups
p-Groups
Invariant fields
Invariant rings
SAGBI Bases
Complete Intersections
.
description In this thesis we study the invariant rings for the Sylow p-subgroups of the nite classical groups. We have successfully constructed presentations for the invariant rings for the Sylow p-subgroups of the unitary groups GU(3; Fq2) and GU(4; Fq2 ), the symplectic group Sp(4; Fq) and the orthogonal group O+(4; Fq) with q odd. In all cases, we obtained a minimal generating set which is also a SAGBI basis. Moreover, we computed the relations among the generators and showed that the invariant ring for these groups are a complete intersection. This shows that, even though the invariant rings of the Sylow p-subgroups of the general linear group are polynomial, the same is not true for Sylow p-subgroups of general classical groups. We also constructed the generators for the invariant elds for the Sylow p-subgroups of GU(n; Fq2 ), Sp(2n; Fq), O+(2n; Fq), O-(2n + 2; Fq) and O(2n + 1; Fq), for every n and q. This is an important step in order to obtain the generators and relations for the invariant rings of all these groups.
publishDate 2011
dc.date.none.fl_str_mv 2011-10-12T13:39:14Z
2011
2011-01-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/177
url http://hdl.handle.net/10400.13/177
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Kent
publisher.none.fl_str_mv University of Kent
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598862351138816