The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.13/5033 |
Summary: | Let G be a Sylow p-subgroup of the unitary groups GU(3, q2), GU(4, q2), the symplectic group Sp(4, q) and, for q odd, the orthogonal group O +(4, q). In this paper we construct a presenta tion for the invariant ring of G acting on the natural module. In particular we prove that these rings are generated by orbit products of variables and certain invariant polynomials which are images under Steenrod operations, applied to the respective invariant form defining the corresponding classical group. We also show that these generators form a SAGBI basis and the invariant ring for G is a complete intersection. |
id |
RCAP_35c512e4f769d40aa7a58e9075c0c31e |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5033 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristicInvariant ringsSAGBI basesModular invariant theorySylow subgroupsFinite classical groups.Faculdade de Ciências Exatas e da EngenhariaLet G be a Sylow p-subgroup of the unitary groups GU(3, q2), GU(4, q2), the symplectic group Sp(4, q) and, for q odd, the orthogonal group O +(4, q). In this paper we construct a presenta tion for the invariant ring of G acting on the natural module. In particular we prove that these rings are generated by orbit products of variables and certain invariant polynomials which are images under Steenrod operations, applied to the respective invariant form defining the corresponding classical group. We also show that these generators form a SAGBI basis and the invariant ring for G is a complete intersection.ElsevierDigitUMaFerreira, Jorge N. M.Fleischmann, Peter2023-02-13T16:09:40Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/5033eng10.1016/j.jsc.2016.02.013info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-24T16:55:30Zoai:digituma.uma.pt:10400.13/5033Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:43:01.401435Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
title |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
spellingShingle |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic Ferreira, Jorge N. M. Invariant rings SAGBI bases Modular invariant theory Sylow subgroups Finite classical groups . Faculdade de Ciências Exatas e da Engenharia |
title_short |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
title_full |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
title_fullStr |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
title_full_unstemmed |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
title_sort |
The invariant rings of the Sylow groups of GU(3,q2), GU(4,q2), Sp(4,q) and O+(4,q) in the natural characteristic |
author |
Ferreira, Jorge N. M. |
author_facet |
Ferreira, Jorge N. M. Fleischmann, Peter |
author_role |
author |
author2 |
Fleischmann, Peter |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Ferreira, Jorge N. M. Fleischmann, Peter |
dc.subject.por.fl_str_mv |
Invariant rings SAGBI bases Modular invariant theory Sylow subgroups Finite classical groups . Faculdade de Ciências Exatas e da Engenharia |
topic |
Invariant rings SAGBI bases Modular invariant theory Sylow subgroups Finite classical groups . Faculdade de Ciências Exatas e da Engenharia |
description |
Let G be a Sylow p-subgroup of the unitary groups GU(3, q2), GU(4, q2), the symplectic group Sp(4, q) and, for q odd, the orthogonal group O +(4, q). In this paper we construct a presenta tion for the invariant ring of G acting on the natural module. In particular we prove that these rings are generated by orbit products of variables and certain invariant polynomials which are images under Steenrod operations, applied to the respective invariant form defining the corresponding classical group. We also show that these generators form a SAGBI basis and the invariant ring for G is a complete intersection. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2023-02-13T16:09:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5033 |
url |
http://hdl.handle.net/10400.13/5033 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.jsc.2016.02.013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598815152635904 |