Existence of positive periodic solutions for scalar delay differential equations with and without impulses
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/61428 |
Summary: | The paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses. |
id |
RCAP_702b2a62db170324c3395e73fb5a2dbc |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/61428 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Existence of positive periodic solutions for scalar delay differential equations with and without impulsesDelay differential equationImpulsesPositive periodic solutionFixed point theoremsHematopoiesis modelNicholson equationCiências Naturais::MatemáticasScience & TechnologyThe paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses.This work was partially supported by Fundação para a Ciência e a Tecnologia under Project UID/MAT/04561/2013 (Teresa Faria) and UID/MAT/00013/2013 (José J. Oliveira)SpringerUniversidade do MinhoFaria, TeresaOliveira, José J.2019-092019-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/61428eng1040-72941572-922210.1007/s10884-017-9616-0https://link.springer.com/article/10.1007/s10884-017-9616-0info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:14:51Zoai:repositorium.sdum.uminho.pt:1822/61428Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:20:34.773250Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
title |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
spellingShingle |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses Faria, Teresa Delay differential equation Impulses Positive periodic solution Fixed point theorems Hematopoiesis model Nicholson equation Ciências Naturais::Matemáticas Science & Technology |
title_short |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
title_full |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
title_fullStr |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
title_full_unstemmed |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
title_sort |
Existence of positive periodic solutions for scalar delay differential equations with and without impulses |
author |
Faria, Teresa |
author_facet |
Faria, Teresa Oliveira, José J. |
author_role |
author |
author2 |
Oliveira, José J. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Faria, Teresa Oliveira, José J. |
dc.subject.por.fl_str_mv |
Delay differential equation Impulses Positive periodic solution Fixed point theorems Hematopoiesis model Nicholson equation Ciências Naturais::Matemáticas Science & Technology |
topic |
Delay differential equation Impulses Positive periodic solution Fixed point theorems Hematopoiesis model Nicholson equation Ciências Naturais::Matemáticas Science & Technology |
description |
The paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 2019-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/61428 |
url |
https://hdl.handle.net/1822/61428 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1040-7294 1572-9222 10.1007/s10884-017-9616-0 https://link.springer.com/article/10.1007/s10884-017-9616-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595886240792576 |