Existence of positive periodic solutions for scalar delay differential equations with and without impulses

Bibliographic Details
Main Author: Faria, Teresa
Publication Date: 2019
Other Authors: Oliveira, José J.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/61428
Summary: The paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses.
id RCAP_702b2a62db170324c3395e73fb5a2dbc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/61428
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Existence of positive periodic solutions for scalar delay differential equations with and without impulsesDelay differential equationImpulsesPositive periodic solutionFixed point theoremsHematopoiesis modelNicholson equationCiências Naturais::MatemáticasScience & TechnologyThe paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses.This work was partially supported by Fundação para a Ciência e a Tecnologia under Project UID/MAT/04561/2013 (Teresa Faria) and UID/MAT/00013/2013 (José J. Oliveira)SpringerUniversidade do MinhoFaria, TeresaOliveira, José J.2019-092019-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/61428eng1040-72941572-922210.1007/s10884-017-9616-0https://link.springer.com/article/10.1007/s10884-017-9616-0info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:14:51Zoai:repositorium.sdum.uminho.pt:1822/61428Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:20:34.773250Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Existence of positive periodic solutions for scalar delay differential equations with and without impulses
title Existence of positive periodic solutions for scalar delay differential equations with and without impulses
spellingShingle Existence of positive periodic solutions for scalar delay differential equations with and without impulses
Faria, Teresa
Delay differential equation
Impulses
Positive periodic solution
Fixed point theorems
Hematopoiesis model
Nicholson equation
Ciências Naturais::Matemáticas
Science & Technology
title_short Existence of positive periodic solutions for scalar delay differential equations with and without impulses
title_full Existence of positive periodic solutions for scalar delay differential equations with and without impulses
title_fullStr Existence of positive periodic solutions for scalar delay differential equations with and without impulses
title_full_unstemmed Existence of positive periodic solutions for scalar delay differential equations with and without impulses
title_sort Existence of positive periodic solutions for scalar delay differential equations with and without impulses
author Faria, Teresa
author_facet Faria, Teresa
Oliveira, José J.
author_role author
author2 Oliveira, José J.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Faria, Teresa
Oliveira, José J.
dc.subject.por.fl_str_mv Delay differential equation
Impulses
Positive periodic solution
Fixed point theorems
Hematopoiesis model
Nicholson equation
Ciências Naturais::Matemáticas
Science & Technology
topic Delay differential equation
Impulses
Positive periodic solution
Fixed point theorems
Hematopoiesis model
Nicholson equation
Ciências Naturais::Matemáticas
Science & Technology
description The paper is concerned with a broad family of scalar periodic delay differential equations with linear impulses, forwhich the existence of a positive periodic solution is established under very general conditions. The proofs rely on fixed point arguments, employing either the Schauder theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected examples from mathematical biology. The method presented here turns out to be very powerful, in the sense that the derived theorems largely generalize and improve other results in recent literature, even for the situation without impulses.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
2019-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/61428
url https://hdl.handle.net/1822/61428
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1040-7294
1572-9222
10.1007/s10884-017-9616-0
https://link.springer.com/article/10.1007/s10884-017-9616-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595886240792576