Periodic solutions of Lienard differential equations via averaging theory of order two
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
| Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000501905 |
Resumo: | Abstract For ε ≠ 0sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x ′′ + f ( x ) x ′ + n 2 x + g ( x ) = ε 2 p 1 ( t ) + ε 3 p 2 ( t ) , where n is a positive integer, f : ℝ → ℝis a C 3function, g : ℝ → ℝis a C 4function, and p i : ℝ → ℝfor i = 1 , 2are continuous 2 π–periodic function. The main tool used in this paper is the averaging theory of second order. We also provide one application of the main result obtained. |
| id |
ABC-1_01d6d22b9b6807536f9f11cdd5a8b82b |
|---|---|
| oai_identifier_str |
oai:scielo:S0001-37652015000501905 |
| network_acronym_str |
ABC-1 |
| network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
| repository_id_str |
|
| spelling |
Periodic solutions of Lienard differential equations via averaging theory of order twoperiodic solutionLienard differential equationaveraging theorybifurcation theoryAbstract For ε ≠ 0sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x ′′ + f ( x ) x ′ + n 2 x + g ( x ) = ε 2 p 1 ( t ) + ε 3 p 2 ( t ) , where n is a positive integer, f : ℝ → ℝis a C 3function, g : ℝ → ℝis a C 4function, and p i : ℝ → ℝfor i = 1 , 2are continuous 2 π–periodic function. The main tool used in this paper is the averaging theory of second order. We also provide one application of the main result obtained.Academia Brasileira de Ciências2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000501905Anais da Academia Brasileira de Ciências v.87 n.4 2015reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201520140129info:eu-repo/semantics/openAccessLLIBRE,JAUMENOVAES,DOUGLAS D.TEIXEIRA,MARCO A.eng2015-12-11T00:00:00Zoai:scielo:S0001-37652015000501905Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2015-12-11T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
| dc.title.none.fl_str_mv |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| title |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| spellingShingle |
Periodic solutions of Lienard differential equations via averaging theory of order two LLIBRE,JAUME periodic solution Lienard differential equation averaging theory bifurcation theory |
| title_short |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| title_full |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| title_fullStr |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| title_full_unstemmed |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| title_sort |
Periodic solutions of Lienard differential equations via averaging theory of order two |
| author |
LLIBRE,JAUME |
| author_facet |
LLIBRE,JAUME NOVAES,DOUGLAS D. TEIXEIRA,MARCO A. |
| author_role |
author |
| author2 |
NOVAES,DOUGLAS D. TEIXEIRA,MARCO A. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
LLIBRE,JAUME NOVAES,DOUGLAS D. TEIXEIRA,MARCO A. |
| dc.subject.por.fl_str_mv |
periodic solution Lienard differential equation averaging theory bifurcation theory |
| topic |
periodic solution Lienard differential equation averaging theory bifurcation theory |
| description |
Abstract For ε ≠ 0sufficiently small we provide sufficient conditions for the existence of periodic solutions for the Lienard differential equations of the form x ′′ + f ( x ) x ′ + n 2 x + g ( x ) = ε 2 p 1 ( t ) + ε 3 p 2 ( t ) , where n is a positive integer, f : ℝ → ℝis a C 3function, g : ℝ → ℝis a C 4function, and p i : ℝ → ℝfor i = 1 , 2are continuous 2 π–periodic function. The main tool used in this paper is the averaging theory of second order. We also provide one application of the main result obtained. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-12-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000501905 |
| url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000501905 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.1590/0001-3765201520140129 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
| publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
| dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.87 n.4 2015 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
| instname_str |
Academia Brasileira de Ciências (ABC) |
| instacron_str |
ABC |
| institution |
ABC |
| reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
| collection |
Anais da Academia Brasileira de Ciências (Online) |
| repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
| repository.mail.fl_str_mv |
||aabc@abc.org.br |
| _version_ |
1754302861500481536 |