CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.17/3958 |
Summary: | Background: Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. We hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis. Methods: This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category. Results: AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively. Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference -0.8%; 95% CI 13.8% to -15.3%) and per-patient (mean difference -2.3%; 95% CI 15.8% to -20.4%). L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis. There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution. Conclusions: AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. There was a wide range of atherosclerosis identified through AI. |
id |
RCAP_6868a8be60322ce306f9d131eea2f9d0 |
---|---|
oai_identifier_str |
oai:repositorio.chlc.pt:10400.17/3958 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International StudyHSM IMAHumansArtificial IntelligenceAtherosclerosis* / diagnostic imagingComputed Tomography AngiographyConstriction, PathologicCoronary AngiographyCoronary Artery Disease* / diagnostic imagingCoronary Stenosis* / diagnostic imagingIntelligencePredictive Value of TestsTomography, X-Ray ComputedBackground: Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. We hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis. Methods: This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category. Results: AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively. Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference -0.8%; 95% CI 13.8% to -15.3%) and per-patient (mean difference -2.3%; 95% CI 15.8% to -20.4%). L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis. There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution. Conclusions: AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. There was a wide range of atherosclerosis identified through AI.ElsevierRepositório da Unidade Local de Saúde São JoséChoi, AMarques, HKumar, VGriffin, WRahban, HKarlsberg, RZeman, RKatz, REarls, J2022-01-19T15:25:29Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.17/3958eng10.1016/j.jcct.2021.05.004.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-06T16:50:40Zoai:repositorio.chlc.pt:10400.17/3958Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:21:29.248845Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
title |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
spellingShingle |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study Choi, A HSM IMA Humans Artificial Intelligence Atherosclerosis* / diagnostic imaging Computed Tomography Angiography Constriction, Pathologic Coronary Angiography Coronary Artery Disease* / diagnostic imaging Coronary Stenosis* / diagnostic imaging Intelligence Predictive Value of Tests Tomography, X-Ray Computed |
title_short |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
title_full |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
title_fullStr |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
title_full_unstemmed |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
title_sort |
CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): a Multi-Center, International Study |
author |
Choi, A |
author_facet |
Choi, A Marques, H Kumar, V Griffin, W Rahban, H Karlsberg, R Zeman, R Katz, R Earls, J |
author_role |
author |
author2 |
Marques, H Kumar, V Griffin, W Rahban, H Karlsberg, R Zeman, R Katz, R Earls, J |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Unidade Local de Saúde São José |
dc.contributor.author.fl_str_mv |
Choi, A Marques, H Kumar, V Griffin, W Rahban, H Karlsberg, R Zeman, R Katz, R Earls, J |
dc.subject.por.fl_str_mv |
HSM IMA Humans Artificial Intelligence Atherosclerosis* / diagnostic imaging Computed Tomography Angiography Constriction, Pathologic Coronary Angiography Coronary Artery Disease* / diagnostic imaging Coronary Stenosis* / diagnostic imaging Intelligence Predictive Value of Tests Tomography, X-Ray Computed |
topic |
HSM IMA Humans Artificial Intelligence Atherosclerosis* / diagnostic imaging Computed Tomography Angiography Constriction, Pathologic Coronary Angiography Coronary Artery Disease* / diagnostic imaging Coronary Stenosis* / diagnostic imaging Intelligence Predictive Value of Tests Tomography, X-Ray Computed |
description |
Background: Atherosclerosis evaluation by coronary computed tomography angiography (CCTA) is promising for coronary artery disease (CAD) risk stratification, but time consuming and requires high expertise. Artificial Intelligence (AI) applied to CCTA for comprehensive CAD assessment may overcome these limitations. We hypothesized AI aided analysis allows for rapid, accurate evaluation of vessel morphology and stenosis. Methods: This was a multi-site study of 232 patients undergoing CCTA. Studies were analyzed by FDA-cleared software service that performs AI-driven coronary artery segmentation and labeling, lumen and vessel wall determination, plaque quantification and characterization with comparison to ground truth of consensus by three L3 readers. CCTAs were analyzed for: % maximal diameter stenosis, plaque volume and composition, presence of high-risk plaque and Coronary Artery Disease Reporting & Data System (CAD-RADS) category. Results: AI performance was excellent for accuracy, sensitivity, specificity, positive predictive value and negative predictive value as follows: >70% stenosis: 99.7%, 90.9%, 99.8%, 93.3%, 99.9%, respectively; >50% stenosis: 94.8%, 80.0%, 97.0, 80.0%, 97.0%, respectively. Bland-Altman plots depict agreement between expert reader and AI determined maximal diameter stenosis for per-vessel (mean difference -0.8%; 95% CI 13.8% to -15.3%) and per-patient (mean difference -2.3%; 95% CI 15.8% to -20.4%). L3 and AI agreed within one CAD-RADS category in 228/232 (98.3%) exams per-patient and 923/924 (99.9%) vessels on a per-vessel basis. There was a wide range of atherosclerosis in the coronary artery territories assessed by AI when stratified by CAD-RADS distribution. Conclusions: AI-aided approach to CCTA interpretation determines coronary stenosis and CAD-RADS category in close agreement with consensus of L3 expert readers. There was a wide range of atherosclerosis identified through AI. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2022-01-19T15:25:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.17/3958 |
url |
http://hdl.handle.net/10400.17/3958 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.jcct.2021.05.004. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600501456830464 |