id RCAP_54fa36e7c0515b642e785e77b744fa8c
oai_identifier_str oai:run.unl.pt:10362/133561
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligenceatherosclerosiscarotid artery diseasescomputed tomography angiographycoronary angiographydiagnostic imagingCardiology and Cardiovascular MedicineFunding Information: ADC is supported by a grant from the GW Heart and Vascular Institute.Objective The study evaluates the relationship of coronary stenosis, atherosclerotic plaque characteristics (APCs) and age using artificial intelligence enabled quantitative coronary computed tomographic angiography (AI-QCT). Methods This is a post-hoc analysis of data from 303 subjects enrolled in the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic Determinants of Myocardial IsChEmia) trial who were referred for invasive coronary angiography and subsequently underwent coronary computed tomographic angiography (CCTA). In this study, a blinded core laboratory analysing quantitative coronary angiography images classified lesions as obstructive (≥50%) or non-obstructive (<50%) while AI software quantified APCs including plaque volume (PV), low-density non-calcified plaque (LD-NCP), non-calcified plaque (NCP), calcified plaque (CP), lesion length on a per-patient and per-lesion basis based on CCTA imaging. Plaque measurements were normalised for vessel volume and reported as % percent atheroma volume (%PAV) for all relevant plaque components. Data were subsequently stratified by age <65 and ≥65 years. Results The cohort was 64.4±10.2 years and 29% women. Overall, patients >65 had more PV and CP than patients <65. On a lesion level, patients >65 had more CP than younger patients in both obstructive (29.2 mm 3 vs 48.2 mm 3; p<0.04) and non-obstructive lesions (22.1 mm 3 vs 49.4 mm 3; p<0.004) while younger patients had more %PAV (LD-NCP) (1.5% vs 0.7%; p<0.038). Younger patients had more PV, LD-NCP, NCP and lesion lengths in obstructive compared with non-obstructive lesions. There were no differences observed between lesion types in older patients. Conclusion AI-QCT identifies a unique APC signature that differs by age and degree of stenosis and provides a foundation for AI-guided age-based approaches to atherosclerosis identification, prevention and treatment.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)Comprehensive Health Research Centre (CHRC) - pólo NMSRUNJonas, RebeccaEarls, JamesPinto Marques, HugoChang, Hyuk JaeChoi, Jung HyunDoh, Joon HyungHer, Ae YoungKoo, Bon KwonNam, Chang WookPark, Hyung BokShin, SanghoonCole, JasonGimelli, AlessiaKhan, Muhammad AkramLu, BinGao, YangNabi, FaisalNakazato, RyoSchoepf, U. JosephDriessen, Roel S.Bom, Michiel J.Thompson, Randall C.Jang, James J.Ridner, MichaelRowan, ChrisAvelar, ErickGénéreux, PhilippeKnaapen, PaulDe Waard, Guus A.Pontone, GianlucaAndreini, DanieleAl-Mallah, Mouaz H.Jennings, RobertCrabtree, Tami R.Villines, Todd C.Min, James K.Choi, Andrew D.2022-02-24T23:22:05Z2021-11-162021-11-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/133561eng2398-595XPURE: 35418905https://doi.org/10.1136/openhrt-2021-001832info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-21T01:36:16Zoai:run.unl.pt:10362/133561Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:30:45.389155Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
title Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
spellingShingle Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
Jonas, Rebecca
atherosclerosis
carotid artery diseases
computed tomography angiography
coronary angiography
diagnostic imaging
Cardiology and Cardiovascular Medicine
title_short Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
title_full Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
title_fullStr Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
title_full_unstemmed Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
title_sort Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence
author Jonas, Rebecca
author_facet Jonas, Rebecca
Earls, James
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sanghoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
De Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Al-Mallah, Mouaz H.
Jennings, Robert
Crabtree, Tami R.
Villines, Todd C.
Min, James K.
Choi, Andrew D.
author_role author
author2 Earls, James
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sanghoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
De Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Al-Mallah, Mouaz H.
Jennings, Robert
Crabtree, Tami R.
Villines, Todd C.
Min, James K.
Choi, Andrew D.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
Comprehensive Health Research Centre (CHRC) - pólo NMS
RUN
dc.contributor.author.fl_str_mv Jonas, Rebecca
Earls, James
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sanghoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
De Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Al-Mallah, Mouaz H.
Jennings, Robert
Crabtree, Tami R.
Villines, Todd C.
Min, James K.
Choi, Andrew D.
dc.subject.por.fl_str_mv atherosclerosis
carotid artery diseases
computed tomography angiography
coronary angiography
diagnostic imaging
Cardiology and Cardiovascular Medicine
topic atherosclerosis
carotid artery diseases
computed tomography angiography
coronary angiography
diagnostic imaging
Cardiology and Cardiovascular Medicine
description Funding Information: ADC is supported by a grant from the GW Heart and Vascular Institute.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-16
2021-11-16T00:00:00Z
2022-02-24T23:22:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/133561
url http://hdl.handle.net/10362/133561
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2398-595X
PURE: 35418905
https://doi.org/10.1136/openhrt-2021-001832
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596748287705088