A fractional analysis in higher dimensions for the Sturm-Liouville problem

Bibliographic Details
Main Author: Ferreira, M.
Publication Date: 2021
Other Authors: Rodrigues, M. M., Vieira, N.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/31250
Summary: In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.
id RCAP_684cd2aef3cdf5d0ef7864df454e7f72
oai_identifier_str oai:ria.ua.pt:10773/31250
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A fractional analysis in higher dimensions for the Sturm-Liouville problemFractional derivativesFractional Sturm-Liouville problemFractional variational calculusEigenvalue problemEigenfunctionsFractional Clifford analysisIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.De Gruyter2021-042021-04-01T00:00:00Z2022-03-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31250eng1311-045410.1515/fca-2021-0026Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:31:42Zoai:ria.ua.pt:10773/31250Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:11:32.021553Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A fractional analysis in higher dimensions for the Sturm-Liouville problem
title A fractional analysis in higher dimensions for the Sturm-Liouville problem
spellingShingle A fractional analysis in higher dimensions for the Sturm-Liouville problem
Ferreira, M.
Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
title_short A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_full A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_fullStr A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_full_unstemmed A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_sort A fractional analysis in higher dimensions for the Sturm-Liouville problem
author Ferreira, M.
author_facet Ferreira, M.
Rodrigues, M. M.
Vieira, N.
author_role author
author2 Rodrigues, M. M.
Vieira, N.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, M.
Rodrigues, M. M.
Vieira, N.
dc.subject.por.fl_str_mv Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
topic Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
description In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
2021-04-01T00:00:00Z
2022-03-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31250
url http://hdl.handle.net/10773/31250
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1311-0454
10.1515/fca-2021-0026
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594381508018176