A fractional analysis in higher dimensions for the Sturm-Liouville problem
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/31250 |
Summary: | In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established. |
id |
RCAP_684cd2aef3cdf5d0ef7864df454e7f72 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31250 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A fractional analysis in higher dimensions for the Sturm-Liouville problemFractional derivativesFractional Sturm-Liouville problemFractional variational calculusEigenvalue problemEigenfunctionsFractional Clifford analysisIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.De Gruyter2021-042021-04-01T00:00:00Z2022-03-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31250eng1311-045410.1515/fca-2021-0026Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:31:42Zoai:ria.ua.pt:10773/31250Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:11:32.021553Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
spellingShingle |
A fractional analysis in higher dimensions for the Sturm-Liouville problem Ferreira, M. Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
title_short |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_full |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_fullStr |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_full_unstemmed |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_sort |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
author |
Ferreira, M. |
author_facet |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
author_role |
author |
author2 |
Rodrigues, M. M. Vieira, N. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
dc.subject.por.fl_str_mv |
Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
topic |
Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
description |
In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 2021-04-01T00:00:00Z 2022-03-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31250 |
url |
http://hdl.handle.net/10773/31250 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1311-0454 10.1515/fca-2021-0026 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594381508018176 |