Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm
Main Author: | |
---|---|
Publication Date: | 2018 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/64813 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_64200d79747e44cae75e18aee545eb9f |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/64813 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithmSemantic Learning MachineNEATNeuroevolutionDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceNeuroevolution is a field in which evolutionary algorithms are applied with the goal of evolving Artificial Neural Networks (ANNs). These evolutionary approaches can be used to evolve ANNs with fixed or dynamic topologies. This paper studies the Semantic Learning Machine (SLM) algorithm, a recently proposed neuroevolution method that searches over unimodal error landscapes in any supervised learning problem, where the error is measured as a distance to the known targets. SLM is compared with the topology-changing algorithm NeuroEvolution of Augmenting Topologies (NEAT) and with a fixed-topology neuroevolution approach. Experiments are performed on a total of 6 real-world datasets of classification and regression tasks. The results show that the best SLM variants outperform the other neuroevolution approaches in terms of generalization achieved, while also being more efficient in learning the training data. Further comparisons show that the best SLM variants also outperform the common ANN backpropagation-based approach under different topologies. A combination of the SLM with a recently proposed semantic stopping criterion also shows that it is possible to evolve competitive neural networks in a few seconds on the vast majority of the datasets considered.Neuro evolução é uma área onde algoritmos evolucionários são aplicados com o objetivo de evoluir Artificial Neural Networks (ANN). Estas abordagens evolucionárias podem ser utilizadas para evoluir ANNs com topologias fixas ou dinâmicas. Este artigo estuda o algoritmo de Semantic Learning Machine (SLM), um método de neuro evolução proposto recentemente que percorre paisagens de erros unimodais em qualquer problema de aprendizagem supervisionada, onde o erro é medido como a distância com os alvos conhecidos previamente. SLM é comparado com o algoritmo de alteração de topologias NeuroEvolution of Augmenting Topologies (NEAT) e com uma abordagem neuro evolucionária de topologias fixas. Experiências são realizadas em 6 datasets reais de tarefas de regressão e classificação. Os resultados mostram que as melhores variantes de SLM são mais capazes de generalizar quando comparadas com outras abordagens de neuro evolução, ao mesmo tempo que são mais eficientes no processo de treino. Mais comparações mostram que as melhores variantes de SLM são mais eficazes que as abordagens mais comuns de treino de ANN usando diferentes topologias e retro propagação. A combinação de SLM com um critério semântico de paragem do processo de treino também mostra que é possível criar redes neuronais competitivas em poucos segundos, na maioria dos datasets considerados.Castelli, MauroRUNJagusch, Jan-Benedikt2019-03-28T17:11:13Z2018-11-302018-11-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/64813TID:202207676enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:38:14Zoai:run.unl.pt:10362/64813Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:09:24.822968Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
title |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
spellingShingle |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm Jagusch, Jan-Benedikt Semantic Learning Machine NEAT Neuroevolution |
title_short |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
title_full |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
title_fullStr |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
title_full_unstemmed |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
title_sort |
Neuroevolution under unimodal error landscapes : an exploration of the semantic learning machine algorithm |
author |
Jagusch, Jan-Benedikt |
author_facet |
Jagusch, Jan-Benedikt |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Jagusch, Jan-Benedikt |
dc.subject.por.fl_str_mv |
Semantic Learning Machine NEAT Neuroevolution |
topic |
Semantic Learning Machine NEAT Neuroevolution |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-30 2018-11-30T00:00:00Z 2019-03-28T17:11:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/64813 TID:202207676 |
url |
http://hdl.handle.net/10362/64813 |
identifier_str_mv |
TID:202207676 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596474420625408 |