Neuroevolution under unimodal error landscapes
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/46403 |
Summary: | Jagusch, J-B., Gonçalves, I., & Castelli, M. (2018). Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm. In GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion (pp. 159-160). Association for Computing Machinery, Inc. DOI: 10.1145/3205651.3205778 |
id |
RCAP_0a8d981c846e7aa8c8ff428c4433782e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/46403 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Neuroevolution under unimodal error landscapesAn exploration of the semantic learning machine algorithmMLPNEATNeuroevolutionSemantic learning machineComputer Science ApplicationsSoftwareComputational Theory and MathematicsTheoretical Computer ScienceJagusch, J-B., Gonçalves, I., & Castelli, M. (2018). Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm. In GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion (pp. 159-160). Association for Computing Machinery, Inc. DOI: 10.1145/3205651.3205778Neuroevolution is a field in which evolutionary algorithms are applied with the goal of evolving Neural Networks (NNs). This paper studies different variants of the Semantic Learning Machine (SLM) algorithm, a recently proposed supervised learning neuroevolution method. Perhaps the most interesting characteristic of SLM is that it searches over unimodal error landscapes in any supervised learning problem where the error is measured as a distance to the known targets. SLM is compared with the NeuroEvolution of Augmenting Topologies (NEAT) algorithm and with a fixed-topology neuroevolution approach. Experiments are performed on a total of 9 real-world regression and classification datasets. The results show that the best SLM variants generally outperform the other neuroevolution approaches in terms of generalization achieved, while also being more efficient in learning the training data. The best SLM variants also outperform the common NN backpropagation-based approach under different topologies. The most efficient SLM variant used in combination with a recently proposed semantic stopping criterion is capable of evolving competitive neural networks in a few seconds on the vast majority of the datasets considered. A final comparison shows that a NN ensemble built with SLM is able to outperform the Random Forest algorithm in two classification datasets.ACM - Association for Computing MachineryNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNJagusch, Jan-BenediktGonçalves, IvoCastelli, Mauro2018-09-12T22:15:01Z2018-07-062018-07-06T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion2application/pdfhttp://hdl.handle.net/10362/46403eng9781450357647PURE: 5822890https://doi.org/10.1145/3205651.3205778info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:34:45Zoai:run.unl.pt:10362/46403Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:05:51.165856Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Neuroevolution under unimodal error landscapes An exploration of the semantic learning machine algorithm |
title |
Neuroevolution under unimodal error landscapes |
spellingShingle |
Neuroevolution under unimodal error landscapes Jagusch, Jan-Benedikt MLP NEAT Neuroevolution Semantic learning machine Computer Science Applications Software Computational Theory and Mathematics Theoretical Computer Science |
title_short |
Neuroevolution under unimodal error landscapes |
title_full |
Neuroevolution under unimodal error landscapes |
title_fullStr |
Neuroevolution under unimodal error landscapes |
title_full_unstemmed |
Neuroevolution under unimodal error landscapes |
title_sort |
Neuroevolution under unimodal error landscapes |
author |
Jagusch, Jan-Benedikt |
author_facet |
Jagusch, Jan-Benedikt Gonçalves, Ivo Castelli, Mauro |
author_role |
author |
author2 |
Gonçalves, Ivo Castelli, Mauro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Jagusch, Jan-Benedikt Gonçalves, Ivo Castelli, Mauro |
dc.subject.por.fl_str_mv |
MLP NEAT Neuroevolution Semantic learning machine Computer Science Applications Software Computational Theory and Mathematics Theoretical Computer Science |
topic |
MLP NEAT Neuroevolution Semantic learning machine Computer Science Applications Software Computational Theory and Mathematics Theoretical Computer Science |
description |
Jagusch, J-B., Gonçalves, I., & Castelli, M. (2018). Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm. In GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion (pp. 159-160). Association for Computing Machinery, Inc. DOI: 10.1145/3205651.3205778 |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-12T22:15:01Z 2018-07-06 2018-07-06T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/46403 |
url |
http://hdl.handle.net/10362/46403 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9781450357647 PURE: 5822890 https://doi.org/10.1145/3205651.3205778 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2 application/pdf |
dc.publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596430858584064 |