Minkowski identities for hypersurfaces in constant sectional curvature manifolds

Bibliographic Details
Main Author: Albuquerque, Rui
Publication Date: 2019
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/26876
https://doi.org/Rui Albuquerque, Minkowski identities for hypersurfaces in constant sectional Curvature manifolds, Differential Geometry and its Applications, Volume 67, 2019, 101561, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2019.101561
https://doi.org/10.1016/j.difgeo.2019.101561
Summary: We give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by the author. We develop the notion of position vector field, which lies at the core of the Minkowski identities.
id RCAP_62bc363be4c78f7cd038b502f087d66f
oai_identifier_str oai:dspace.uevora.pt:10174/26876
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Minkowski identities for hypersurfaces in constant sectional curvature manifoldssistemas diferenciaishipersuperfíciesCurvatura médiaidentidades integraisWe give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by the author. We develop the notion of position vector field, which lies at the core of the Minkowski identities.Elsevier2020-02-10T12:04:19Z2020-02-102019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/26876https://doi.org/Rui Albuquerque, Minkowski identities for hypersurfaces in constant sectional Curvature manifolds, Differential Geometry and its Applications, Volume 67, 2019, 101561, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2019.101561http://hdl.handle.net/10174/26876https://doi.org/10.1016/j.difgeo.2019.101561engrpa@uevora.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:21:55Zoai:dspace.uevora.pt:10174/26876Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:20:52.786460Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Minkowski identities for hypersurfaces in constant sectional curvature manifolds
title Minkowski identities for hypersurfaces in constant sectional curvature manifolds
spellingShingle Minkowski identities for hypersurfaces in constant sectional curvature manifolds
Albuquerque, Rui
sistemas diferenciais
hipersuperfícies
Curvatura média
identidades integrais
title_short Minkowski identities for hypersurfaces in constant sectional curvature manifolds
title_full Minkowski identities for hypersurfaces in constant sectional curvature manifolds
title_fullStr Minkowski identities for hypersurfaces in constant sectional curvature manifolds
title_full_unstemmed Minkowski identities for hypersurfaces in constant sectional curvature manifolds
title_sort Minkowski identities for hypersurfaces in constant sectional curvature manifolds
author Albuquerque, Rui
author_facet Albuquerque, Rui
author_role author
dc.contributor.author.fl_str_mv Albuquerque, Rui
dc.subject.por.fl_str_mv sistemas diferenciais
hipersuperfícies
Curvatura média
identidades integrais
topic sistemas diferenciais
hipersuperfícies
Curvatura média
identidades integrais
description We give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by the author. We develop the notion of position vector field, which lies at the core of the Minkowski identities.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01T00:00:00Z
2020-02-10T12:04:19Z
2020-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/26876
https://doi.org/Rui Albuquerque, Minkowski identities for hypersurfaces in constant sectional Curvature manifolds, Differential Geometry and its Applications, Volume 67, 2019, 101561, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2019.101561
http://hdl.handle.net/10174/26876
https://doi.org/10.1016/j.difgeo.2019.101561
url http://hdl.handle.net/10174/26876
https://doi.org/Rui Albuquerque, Minkowski identities for hypersurfaces in constant sectional Curvature manifolds, Differential Geometry and its Applications, Volume 67, 2019, 101561, ISSN 0926-2245, https://doi.org/10.1016/j.difgeo.2019.101561
https://doi.org/10.1016/j.difgeo.2019.101561
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv rpa@uevora.pt
337
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592745171615744