On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces
| Main Author: | |
|---|---|
| Publication Date: | 2011 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://www.repositorio.ufc.br/handle/riufc/4403 |
Summary: | In this paper we define closed partially conformal vector fields and use them to give a characterization of Riemannian manifolds which admit this kind of fields as some special warped products foliated by (n − 1)-umbilical hypersurfaces. Examples are described in space forms. In particular, closed partially conformal vector fields in Euclidean spaces are associated to the most simple foliations given by hyperspheres, hyperplanes or coaxial cylinders. Finally, for manifolds admitting such vector fields, we impose conditions for a hypersurface to be (n − 1)-umbilical, or, in particular, a leaf of the corresponding foliation. |
| id |
UFC-7_91fc79a023a8f8628650bda1d382020c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/4403 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Colares, Antônio GervásioVelasco, Oscar Alfredo Palmas2013-02-05T13:43:52Z2013-02-05T13:43:52Z2011COLARES, Antônio Gervásio ; PALMAS VELASCO, Oscar Alfredo. On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces. Bulletin Brazilian Mathematical Society, v. 42, n. 1, p. 105-130, 2011.http://www.repositorio.ufc.br/handle/riufc/4403In this paper we define closed partially conformal vector fields and use them to give a characterization of Riemannian manifolds which admit this kind of fields as some special warped products foliated by (n − 1)-umbilical hypersurfaces. Examples are described in space forms. In particular, closed partially conformal vector fields in Euclidean spaces are associated to the most simple foliations given by hyperspheres, hyperplanes or coaxial cylinders. Finally, for manifolds admitting such vector fields, we impose conditions for a hypersurface to be (n − 1)-umbilical, or, in particular, a leaf of the corresponding foliation.CurvaturaHipersuperfíciesVariedades riemanianasOn Riemannian manifolds foliated by (n − 1)-umbilical hypersurfacesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCORIGINAL2011_art_agcolares.pdf2011_art_agcolares.pdfapplication/pdf236287http://repositorio.ufc.br/bitstream/riufc/4403/1/2011_art_agcolares.pdf21f595c27973374bced321721a66a351MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/4403/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/44032023-10-31 11:37:40.197oai:repositorio.ufc.br:riufc/4403Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-10-31T14:37:40Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| title |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| spellingShingle |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces Colares, Antônio Gervásio Curvatura Hipersuperfícies Variedades riemanianas |
| title_short |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| title_full |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| title_fullStr |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| title_full_unstemmed |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| title_sort |
On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces |
| author |
Colares, Antônio Gervásio |
| author_facet |
Colares, Antônio Gervásio Velasco, Oscar Alfredo Palmas |
| author_role |
author |
| author2 |
Velasco, Oscar Alfredo Palmas |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Colares, Antônio Gervásio Velasco, Oscar Alfredo Palmas |
| dc.subject.por.fl_str_mv |
Curvatura Hipersuperfícies Variedades riemanianas |
| topic |
Curvatura Hipersuperfícies Variedades riemanianas |
| description |
In this paper we define closed partially conformal vector fields and use them to give a characterization of Riemannian manifolds which admit this kind of fields as some special warped products foliated by (n − 1)-umbilical hypersurfaces. Examples are described in space forms. In particular, closed partially conformal vector fields in Euclidean spaces are associated to the most simple foliations given by hyperspheres, hyperplanes or coaxial cylinders. Finally, for manifolds admitting such vector fields, we impose conditions for a hypersurface to be (n − 1)-umbilical, or, in particular, a leaf of the corresponding foliation. |
| publishDate |
2011 |
| dc.date.issued.fl_str_mv |
2011 |
| dc.date.accessioned.fl_str_mv |
2013-02-05T13:43:52Z |
| dc.date.available.fl_str_mv |
2013-02-05T13:43:52Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
COLARES, Antônio Gervásio ; PALMAS VELASCO, Oscar Alfredo. On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces. Bulletin Brazilian Mathematical Society, v. 42, n. 1, p. 105-130, 2011. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/4403 |
| identifier_str_mv |
COLARES, Antônio Gervásio ; PALMAS VELASCO, Oscar Alfredo. On Riemannian manifolds foliated by (n − 1)-umbilical hypersurfaces. Bulletin Brazilian Mathematical Society, v. 42, n. 1, p. 105-130, 2011. |
| url |
http://www.repositorio.ufc.br/handle/riufc/4403 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/4403/1/2011_art_agcolares.pdf http://repositorio.ufc.br/bitstream/riufc/4403/2/license.txt |
| bitstream.checksum.fl_str_mv |
21f595c27973374bced321721a66a351 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792346268172288 |