Crude oil returns predictability in the frequency domain

Detalhes bibliográficos
Autor(a) principal: Almeida, Joana Filipa Ferreira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.14/42436
Resumo: In this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions.
id RCAP_60d9b19e191d31efa63690ff7a7b2115
oai_identifier_str oai:repositorio.ucp.pt:10400.14/42436
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Crude oil returns predictability in the frequency domainPredictabilityCrude oilOut-of-sample forecastsReturn forecastingFrequency domainMultiresolution analysisPrevisibilidadeCrudePrevisões out-of-samplePrevisão de retornoDomínio da frequênciaAnálise multiresoluçãoIn this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions.Faria, Gonçalo Manuel A. Pereira Oliveira deVerona, FabioVeritatiAlmeida, Joana Filipa Ferreira2023-09-18T16:02:56Z2023-07-122023-042023-07-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42436urn:tid:203350332enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T11:53:58Zoai:repositorio.ucp.pt:10400.14/42436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:44:56.652507Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Crude oil returns predictability in the frequency domain
title Crude oil returns predictability in the frequency domain
spellingShingle Crude oil returns predictability in the frequency domain
Almeida, Joana Filipa Ferreira
Predictability
Crude oil
Out-of-sample forecasts
Return forecasting
Frequency domain
Multiresolution analysis
Previsibilidade
Crude
Previsões out-of-sample
Previsão de retorno
Domínio da frequência
Análise multiresolução
title_short Crude oil returns predictability in the frequency domain
title_full Crude oil returns predictability in the frequency domain
title_fullStr Crude oil returns predictability in the frequency domain
title_full_unstemmed Crude oil returns predictability in the frequency domain
title_sort Crude oil returns predictability in the frequency domain
author Almeida, Joana Filipa Ferreira
author_facet Almeida, Joana Filipa Ferreira
author_role author
dc.contributor.none.fl_str_mv Faria, Gonçalo Manuel A. Pereira Oliveira de
Verona, Fabio
Veritati
dc.contributor.author.fl_str_mv Almeida, Joana Filipa Ferreira
dc.subject.por.fl_str_mv Predictability
Crude oil
Out-of-sample forecasts
Return forecasting
Frequency domain
Multiresolution analysis
Previsibilidade
Crude
Previsões out-of-sample
Previsão de retorno
Domínio da frequência
Análise multiresolução
topic Predictability
Crude oil
Out-of-sample forecasts
Return forecasting
Frequency domain
Multiresolution analysis
Previsibilidade
Crude
Previsões out-of-sample
Previsão de retorno
Domínio da frequência
Análise multiresolução
description In this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-18T16:02:56Z
2023-07-12
2023-04
2023-07-12T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/42436
urn:tid:203350332
url http://hdl.handle.net/10400.14/42436
identifier_str_mv urn:tid:203350332
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601108072726528