Crude oil returns predictability in the frequency domain
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.14/42436 |
Resumo: | In this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions. |
| id |
RCAP_60d9b19e191d31efa63690ff7a7b2115 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/42436 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Crude oil returns predictability in the frequency domainPredictabilityCrude oilOut-of-sample forecastsReturn forecastingFrequency domainMultiresolution analysisPrevisibilidadeCrudePrevisões out-of-samplePrevisão de retornoDomínio da frequênciaAnálise multiresoluçãoIn this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions.Faria, Gonçalo Manuel A. Pereira Oliveira deVerona, FabioVeritatiAlmeida, Joana Filipa Ferreira2023-09-18T16:02:56Z2023-07-122023-042023-07-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/42436urn:tid:203350332enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T11:53:58Zoai:repositorio.ucp.pt:10400.14/42436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:44:56.652507Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Crude oil returns predictability in the frequency domain |
| title |
Crude oil returns predictability in the frequency domain |
| spellingShingle |
Crude oil returns predictability in the frequency domain Almeida, Joana Filipa Ferreira Predictability Crude oil Out-of-sample forecasts Return forecasting Frequency domain Multiresolution analysis Previsibilidade Crude Previsões out-of-sample Previsão de retorno Domínio da frequência Análise multiresolução |
| title_short |
Crude oil returns predictability in the frequency domain |
| title_full |
Crude oil returns predictability in the frequency domain |
| title_fullStr |
Crude oil returns predictability in the frequency domain |
| title_full_unstemmed |
Crude oil returns predictability in the frequency domain |
| title_sort |
Crude oil returns predictability in the frequency domain |
| author |
Almeida, Joana Filipa Ferreira |
| author_facet |
Almeida, Joana Filipa Ferreira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Faria, Gonçalo Manuel A. Pereira Oliveira de Verona, Fabio Veritati |
| dc.contributor.author.fl_str_mv |
Almeida, Joana Filipa Ferreira |
| dc.subject.por.fl_str_mv |
Predictability Crude oil Out-of-sample forecasts Return forecasting Frequency domain Multiresolution analysis Previsibilidade Crude Previsões out-of-sample Previsão de retorno Domínio da frequência Análise multiresolução |
| topic |
Predictability Crude oil Out-of-sample forecasts Return forecasting Frequency domain Multiresolution analysis Previsibilidade Crude Previsões out-of-sample Previsão de retorno Domínio da frequência Análise multiresolução |
| description |
In this dissertation we follow Faria and Verona (2018, 2020a,b, 2021) investigation and apply a wavelet-based method (MODWT MRA) that allows to decomposing a time series into different frequency components. Therefore, one can unveil hidden information in time domain useful to forecasting. Taking into account the Conlon et al. (2021) paper on the time domain, we expand out-of-sample crude oil returns predictability literature, and find strong statistical and economic gains from using frequency domain information. Results are also robust to different settings. The best result achieved is a 2 of 2,35% in the high-frequency component of predictor Chicago Board Options Exchange volatility index (VIX), outperforming out-of-sample R-Squareds obtained in literature on time domain based on end-of-month crude oil returns. In fact, for investors and policymakers interested in oil market developments, the short-term dynamics of Treasury bill rate (TBL), Change in Treasury bill rate (CTBL), and VIX are promising predictors to look at. We also conclude that evidence of predictability is stronger during NBER-dated recessions. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-18T16:02:56Z 2023-07-12 2023-04 2023-07-12T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/42436 urn:tid:203350332 |
| url |
http://hdl.handle.net/10400.14/42436 |
| identifier_str_mv |
urn:tid:203350332 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601108072726528 |