Economic variables today, returns tomorrow

Detalhes bibliográficos
Autor(a) principal: Pimentel, Maria Luísa Charters de Sousa
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.14/21060
Resumo: Commodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions.
id RCAP_2a676bd9b6b3a0ea750c7165196f3d9f
oai_identifier_str oai:repositorio.ucp.pt:10400.14/21060
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Economic variables today, returns tomorrowCommodity price predictabilityOut-of-sample forecastEconomic cyclePrevisão do preço das commoditiesPrevisão out-of-sampleCiclo económicoCommodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions.Ehling, PaulVeritatiPimentel, Maria Luísa Charters de Sousa2016-12-15T16:20:57Z2016-10-2120162016-10-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/21060urn:tid:201283964enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T11:37:29Zoai:repositorio.ucp.pt:10400.14/21060Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:43:25.273205Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Economic variables today, returns tomorrow
title Economic variables today, returns tomorrow
spellingShingle Economic variables today, returns tomorrow
Pimentel, Maria Luísa Charters de Sousa
Commodity price predictability
Out-of-sample forecast
Economic cycle
Previsão do preço das commodities
Previsão out-of-sample
Ciclo económico
title_short Economic variables today, returns tomorrow
title_full Economic variables today, returns tomorrow
title_fullStr Economic variables today, returns tomorrow
title_full_unstemmed Economic variables today, returns tomorrow
title_sort Economic variables today, returns tomorrow
author Pimentel, Maria Luísa Charters de Sousa
author_facet Pimentel, Maria Luísa Charters de Sousa
author_role author
dc.contributor.none.fl_str_mv Ehling, Paul
Veritati
dc.contributor.author.fl_str_mv Pimentel, Maria Luísa Charters de Sousa
dc.subject.por.fl_str_mv Commodity price predictability
Out-of-sample forecast
Economic cycle
Previsão do preço das commodities
Previsão out-of-sample
Ciclo económico
topic Commodity price predictability
Out-of-sample forecast
Economic cycle
Previsão do preço das commodities
Previsão out-of-sample
Ciclo económico
description Commodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-15T16:20:57Z
2016-10-21
2016
2016-10-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/21060
urn:tid:201283964
url http://hdl.handle.net/10400.14/21060
identifier_str_mv urn:tid:201283964
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601099013029888