Economic variables today, returns tomorrow
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2016 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.14/21060 |
Resumo: | Commodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions. |
| id |
RCAP_2a676bd9b6b3a0ea750c7165196f3d9f |
|---|---|
| oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/21060 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Economic variables today, returns tomorrowCommodity price predictabilityOut-of-sample forecastEconomic cyclePrevisão do preço das commoditiesPrevisão out-of-sampleCiclo económicoCommodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions.Ehling, PaulVeritatiPimentel, Maria Luísa Charters de Sousa2016-12-15T16:20:57Z2016-10-2120162016-10-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/21060urn:tid:201283964enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T11:37:29Zoai:repositorio.ucp.pt:10400.14/21060Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:43:25.273205Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Economic variables today, returns tomorrow |
| title |
Economic variables today, returns tomorrow |
| spellingShingle |
Economic variables today, returns tomorrow Pimentel, Maria Luísa Charters de Sousa Commodity price predictability Out-of-sample forecast Economic cycle Previsão do preço das commodities Previsão out-of-sample Ciclo económico |
| title_short |
Economic variables today, returns tomorrow |
| title_full |
Economic variables today, returns tomorrow |
| title_fullStr |
Economic variables today, returns tomorrow |
| title_full_unstemmed |
Economic variables today, returns tomorrow |
| title_sort |
Economic variables today, returns tomorrow |
| author |
Pimentel, Maria Luísa Charters de Sousa |
| author_facet |
Pimentel, Maria Luísa Charters de Sousa |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ehling, Paul Veritati |
| dc.contributor.author.fl_str_mv |
Pimentel, Maria Luísa Charters de Sousa |
| dc.subject.por.fl_str_mv |
Commodity price predictability Out-of-sample forecast Economic cycle Previsão do preço das commodities Previsão out-of-sample Ciclo económico |
| topic |
Commodity price predictability Out-of-sample forecast Economic cycle Previsão do preço das commodities Previsão out-of-sample Ciclo económico |
| description |
Commodity prices are of interest to investors, central banks and policymakers since they are believed to influence general price levels. Therefore, in this thesis I study whether it is possible to forecast commodities returns using economic indicators over different horizons and economic cycles. I establish an out-of-sample (OOS) predictability using different economic variables such as: inflation, unemployment rate, dividend price ratio, industrial production, among others. The time span of the analysis is from 1951 to 2014, over a monthly, quarterly an annual horizon. I observe that inflation is consistently a good predictor for in-sample (IS) and OOS univariate models. Multivariate OOS estimations tend to be more accurate when predicting commodity returns than univariate regressions. Furthermore, the unemployment rate and the commodity currencies are strong statistically significant predictors during economic recessions. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12-15T16:20:57Z 2016-10-21 2016 2016-10-21T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/21060 urn:tid:201283964 |
| url |
http://hdl.handle.net/10400.14/21060 |
| identifier_str_mv |
urn:tid:201283964 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601099013029888 |