BioDR: semantic indexing networks for biomedical document retrieval

Bibliographic Details
Main Author: Lourenço, Anália
Publication Date: 2010
Other Authors: Carreira, Rafael, Glez-Peña, Daniel, Méndez, José R., Carneiro, S., Rocha, Luís M., Díaz, Fernando, Ferreira, Eugénio C., Rocha, I., Fdez-Riverola, Florentino, Rocha, Miguel
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/10213
Summary: In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents.
id RCAP_527591d21c7e823f98fe96b9b69ac881
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/10213
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling BioDR: semantic indexing networks for biomedical document retrievalBiomedical document retrievalDocument relevanceEnhanced Instance Retrieval NetworkNamed entity recognitionSemantic indexing document networkScience & TechnologyIn Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents.Fundação para a Ciência e a Tecnologia (FCT)Maria Barbeito” contract XuntaHUELLA financed by the Consellería de Sanidade (Xunta de Galicia de Galicia)ElsevierUniversidade do MinhoLourenço, AnáliaCarreira, RafaelGlez-Peña, DanielMéndez, José R.Carneiro, S.Rocha, Luís M.Díaz, FernandoFerreira, Eugénio C.Rocha, I.Fdez-Riverola, FlorentinoRocha, Miguel2010-042010-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/10213eng"Expert Systems with Applications". ISSN 0957-4174. 37:4 (Apr. 2010) 3444-3453.0957-417410.1016/j.eswa.2009.10.044info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:05:28Zoai:repositorium.sdum.uminho.pt:1822/10213Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:02:21.405740Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv BioDR: semantic indexing networks for biomedical document retrieval
title BioDR: semantic indexing networks for biomedical document retrieval
spellingShingle BioDR: semantic indexing networks for biomedical document retrieval
Lourenço, Anália
Biomedical document retrieval
Document relevance
Enhanced Instance Retrieval Network
Named entity recognition
Semantic indexing document network
Science & Technology
title_short BioDR: semantic indexing networks for biomedical document retrieval
title_full BioDR: semantic indexing networks for biomedical document retrieval
title_fullStr BioDR: semantic indexing networks for biomedical document retrieval
title_full_unstemmed BioDR: semantic indexing networks for biomedical document retrieval
title_sort BioDR: semantic indexing networks for biomedical document retrieval
author Lourenço, Anália
author_facet Lourenço, Anália
Carreira, Rafael
Glez-Peña, Daniel
Méndez, José R.
Carneiro, S.
Rocha, Luís M.
Díaz, Fernando
Ferreira, Eugénio C.
Rocha, I.
Fdez-Riverola, Florentino
Rocha, Miguel
author_role author
author2 Carreira, Rafael
Glez-Peña, Daniel
Méndez, José R.
Carneiro, S.
Rocha, Luís M.
Díaz, Fernando
Ferreira, Eugénio C.
Rocha, I.
Fdez-Riverola, Florentino
Rocha, Miguel
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Lourenço, Anália
Carreira, Rafael
Glez-Peña, Daniel
Méndez, José R.
Carneiro, S.
Rocha, Luís M.
Díaz, Fernando
Ferreira, Eugénio C.
Rocha, I.
Fdez-Riverola, Florentino
Rocha, Miguel
dc.subject.por.fl_str_mv Biomedical document retrieval
Document relevance
Enhanced Instance Retrieval Network
Named entity recognition
Semantic indexing document network
Science & Technology
topic Biomedical document retrieval
Document relevance
Enhanced Instance Retrieval Network
Named entity recognition
Semantic indexing document network
Science & Technology
description In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents.
publishDate 2010
dc.date.none.fl_str_mv 2010-04
2010-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/10213
url https://hdl.handle.net/1822/10213
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Expert Systems with Applications". ISSN 0957-4174. 37:4 (Apr. 2010) 3444-3453.
0957-4174
10.1016/j.eswa.2009.10.044
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595697166811136