BioDR: semantic indexing networks for biomedical document retrieval
Main Author: | |
---|---|
Publication Date: | 2010 |
Other Authors: | , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/10213 |
Summary: | In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents. |
id |
RCAP_527591d21c7e823f98fe96b9b69ac881 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/10213 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
BioDR: semantic indexing networks for biomedical document retrievalBiomedical document retrievalDocument relevanceEnhanced Instance Retrieval NetworkNamed entity recognitionSemantic indexing document networkScience & TechnologyIn Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents.Fundação para a Ciência e a Tecnologia (FCT)Maria Barbeito” contract XuntaHUELLA financed by the Consellería de Sanidade (Xunta de Galicia de Galicia)ElsevierUniversidade do MinhoLourenço, AnáliaCarreira, RafaelGlez-Peña, DanielMéndez, José R.Carneiro, S.Rocha, Luís M.Díaz, FernandoFerreira, Eugénio C.Rocha, I.Fdez-Riverola, FlorentinoRocha, Miguel2010-042010-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/10213eng"Expert Systems with Applications". ISSN 0957-4174. 37:4 (Apr. 2010) 3444-3453.0957-417410.1016/j.eswa.2009.10.044info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:05:28Zoai:repositorium.sdum.uminho.pt:1822/10213Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:02:21.405740Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
BioDR: semantic indexing networks for biomedical document retrieval |
title |
BioDR: semantic indexing networks for biomedical document retrieval |
spellingShingle |
BioDR: semantic indexing networks for biomedical document retrieval Lourenço, Anália Biomedical document retrieval Document relevance Enhanced Instance Retrieval Network Named entity recognition Semantic indexing document network Science & Technology |
title_short |
BioDR: semantic indexing networks for biomedical document retrieval |
title_full |
BioDR: semantic indexing networks for biomedical document retrieval |
title_fullStr |
BioDR: semantic indexing networks for biomedical document retrieval |
title_full_unstemmed |
BioDR: semantic indexing networks for biomedical document retrieval |
title_sort |
BioDR: semantic indexing networks for biomedical document retrieval |
author |
Lourenço, Anália |
author_facet |
Lourenço, Anália Carreira, Rafael Glez-Peña, Daniel Méndez, José R. Carneiro, S. Rocha, Luís M. Díaz, Fernando Ferreira, Eugénio C. Rocha, I. Fdez-Riverola, Florentino Rocha, Miguel |
author_role |
author |
author2 |
Carreira, Rafael Glez-Peña, Daniel Méndez, José R. Carneiro, S. Rocha, Luís M. Díaz, Fernando Ferreira, Eugénio C. Rocha, I. Fdez-Riverola, Florentino Rocha, Miguel |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Lourenço, Anália Carreira, Rafael Glez-Peña, Daniel Méndez, José R. Carneiro, S. Rocha, Luís M. Díaz, Fernando Ferreira, Eugénio C. Rocha, I. Fdez-Riverola, Florentino Rocha, Miguel |
dc.subject.por.fl_str_mv |
Biomedical document retrieval Document relevance Enhanced Instance Retrieval Network Named entity recognition Semantic indexing document network Science & Technology |
topic |
Biomedical document retrieval Document relevance Enhanced Instance Retrieval Network Named entity recognition Semantic indexing document network Science & Technology |
description |
In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04 2010-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/10213 |
url |
https://hdl.handle.net/1822/10213 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Expert Systems with Applications". ISSN 0957-4174. 37:4 (Apr. 2010) 3444-3453. 0957-4174 10.1016/j.eswa.2009.10.044 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595697166811136 |