Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
Main Author: | |
---|---|
Publication Date: | 2024 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/43605 |
Summary: | The development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimization |
id |
RCAP_4c9854a7ad0e36fe2ba970f60e35713e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/43605 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storageSolid oxide electrolysis cellCarbon-assisted electrolysisHydrogen generationElectrochemical impedance spectroscopyElectrodeSolid electrolyteMixed ionic-electronic conductivityThermochemical expansionDiffusion barrier layerPerovskitePyrochloreThe development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimizationO desenvolvimento da tecnologia de célula de eletrólise de óxido sólido (SOEC) para a produção de hidrogénio verde, através da energia renovável, enfrenta desafios devido à sua degradação a alta temperatura, particularmente na interface ânodo/eletrólito. A utilização de carbono sólido como agente despolarizante no ânodo é um conceito inovador que permite a redução do potencial químico do oxigénio na interface ânodo/eletrólito, eliminando, assim, os riscos associados de elevadas pressões de oxigénio e fatores de degradação. Este trabalho teve como objetivo explorar o conceito de célula de eletrólise assistida por carbono (CA-SOEC), assim como os materiais que podem ser empregues neste tipo de sistema eletroquímico. A investigação centrou-se no design, fabrico e caracterização detalhada dos componentes para as células CA-SOEC. Para além disso, incluiu o desenvolvimento de um material alternativo para a camada de barreira à difusão para operação em condições redutoras (Capítulo 3), otimização do protocolo de fabrico de cátodos de Ni/YSZ (Capítulo 4), avaliação de SrFe0.75Mo0.25O3-δ (Capítulo 5) e Sr0.85Pr0.15TiO3+δ (Capítulo 6) como materiais potenciais para ânodos, e testes eletroquímicos preliminares de modelos de CA-SOECs (Capítulo 7). O material (Y0.9Ca0.1)2Ti2O7-δ do tipo pirocloro demonstrou ser um candidato promissor para a camada de barreira à difusão. Este material é um condutor iónico quase puro, numa vasta gama de condições de p(O2)-T. Este apresenta uma condutividade elétrica aceitável (4.3×10-2 S/cm a 900°C em ar), uma expansão térmica moderada (TEC = 10.3×10-6 K-1), expansão química insignificante e é quimicamente compatível com o eletrólito YSZ e o elétrodo SrFe0.75Mo0.25O3-δ. As perovskitas SrFe0.75Mo0.25O3-δ e Sr0.85Pr0.15TiO3+δ exibem níveis semelhantes de condutividade eletrónica do tipo n em condições redutoras. Enquanto as cerâmicas de SrFe0.75Mo0.25O3-δ apresentam uma expansão termoquímica excessiva a temperaturas elevadas, comprometendo a estabilidade termomecânica do conjunto elétrodo/eletrólito durante o ciclo de p(O2)-T, os titanatos de estrôncio dopados com doadores beneficiam de uma expansão térmica adequada e expansão química negligenciável em condições semelhantes. Embora ambos os materiais tenham demonstrado um desempenho eletroquímico moderado em uma atmosfera de hidrogénio diluído em condições de TCA a 800-850°C, as experiências realizadas revelaram perspetivas futuras para a sua otimização. Testes preliminares de modelos de CA-SOECs baseados em células suportadas por eletrólito de YSZ com ânodo de Ni/YSZ, cátodo de SrFe0.75Mo0.25O3-δ, camadas de barreira à difusão de CGO ou (Y0.9Ca0.1)2Ti2O7-δ no lado do ânodo, e câmara do ânodo preenchida com carbono sólido, mostraram uma diminuição do TCA para ~0 V a 850°C. Isto confirma a funcionalidade do conceito proposto e permite identificar novas abordagens para investigação futura e, consequente, otimização experimental.2025-12-17T00:00:00Z2024-12-13T00:00:00Z2024-12-13doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/43605engBamburov, Aleksandrinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-27T01:50:53Zoai:ria.ua.pt:10773/43605Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:41:51.042294Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
title |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
spellingShingle |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage Bamburov, Aleksandr Solid oxide electrolysis cell Carbon-assisted electrolysis Hydrogen generation Electrochemical impedance spectroscopy Electrode Solid electrolyte Mixed ionic-electronic conductivity Thermochemical expansion Diffusion barrier layer Perovskite Pyrochlore |
title_short |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
title_full |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
title_fullStr |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
title_full_unstemmed |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
title_sort |
Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage |
author |
Bamburov, Aleksandr |
author_facet |
Bamburov, Aleksandr |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bamburov, Aleksandr |
dc.subject.por.fl_str_mv |
Solid oxide electrolysis cell Carbon-assisted electrolysis Hydrogen generation Electrochemical impedance spectroscopy Electrode Solid electrolyte Mixed ionic-electronic conductivity Thermochemical expansion Diffusion barrier layer Perovskite Pyrochlore |
topic |
Solid oxide electrolysis cell Carbon-assisted electrolysis Hydrogen generation Electrochemical impedance spectroscopy Electrode Solid electrolyte Mixed ionic-electronic conductivity Thermochemical expansion Diffusion barrier layer Perovskite Pyrochlore |
description |
The development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimization |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-13T00:00:00Z 2024-12-13 2025-12-17T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/43605 |
url |
http://hdl.handle.net/10773/43605 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598263557619712 |