Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage

Bibliographic Details
Main Author: Bamburov, Aleksandr
Publication Date: 2024
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/43605
Summary: The development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimization
id RCAP_4c9854a7ad0e36fe2ba970f60e35713e
oai_identifier_str oai:ria.ua.pt:10773/43605
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storageSolid oxide electrolysis cellCarbon-assisted electrolysisHydrogen generationElectrochemical impedance spectroscopyElectrodeSolid electrolyteMixed ionic-electronic conductivityThermochemical expansionDiffusion barrier layerPerovskitePyrochloreThe development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimizationO desenvolvimento da tecnologia de célula de eletrólise de óxido sólido (SOEC) para a produção de hidrogénio verde, através da energia renovável, enfrenta desafios devido à sua degradação a alta temperatura, particularmente na interface ânodo/eletrólito. A utilização de carbono sólido como agente despolarizante no ânodo é um conceito inovador que permite a redução do potencial químico do oxigénio na interface ânodo/eletrólito, eliminando, assim, os riscos associados de elevadas pressões de oxigénio e fatores de degradação. Este trabalho teve como objetivo explorar o conceito de célula de eletrólise assistida por carbono (CA-SOEC), assim como os materiais que podem ser empregues neste tipo de sistema eletroquímico. A investigação centrou-se no design, fabrico e caracterização detalhada dos componentes para as células CA-SOEC. Para além disso, incluiu o desenvolvimento de um material alternativo para a camada de barreira à difusão para operação em condições redutoras (Capítulo 3), otimização do protocolo de fabrico de cátodos de Ni/YSZ (Capítulo 4), avaliação de SrFe0.75Mo0.25O3-δ (Capítulo 5) e Sr0.85Pr0.15TiO3+δ (Capítulo 6) como materiais potenciais para ânodos, e testes eletroquímicos preliminares de modelos de CA-SOECs (Capítulo 7). O material (Y0.9Ca0.1)2Ti2O7-δ do tipo pirocloro demonstrou ser um candidato promissor para a camada de barreira à difusão. Este material é um condutor iónico quase puro, numa vasta gama de condições de p(O2)-T. Este apresenta uma condutividade elétrica aceitável (4.3×10-2 S/cm a 900°C em ar), uma expansão térmica moderada (TEC = 10.3×10-6 K-1), expansão química insignificante e é quimicamente compatível com o eletrólito YSZ e o elétrodo SrFe0.75Mo0.25O3-δ. As perovskitas SrFe0.75Mo0.25O3-δ e Sr0.85Pr0.15TiO3+δ exibem níveis semelhantes de condutividade eletrónica do tipo n em condições redutoras. Enquanto as cerâmicas de SrFe0.75Mo0.25O3-δ apresentam uma expansão termoquímica excessiva a temperaturas elevadas, comprometendo a estabilidade termomecânica do conjunto elétrodo/eletrólito durante o ciclo de p(O2)-T, os titanatos de estrôncio dopados com doadores beneficiam de uma expansão térmica adequada e expansão química negligenciável em condições semelhantes. Embora ambos os materiais tenham demonstrado um desempenho eletroquímico moderado em uma atmosfera de hidrogénio diluído em condições de TCA a 800-850°C, as experiências realizadas revelaram perspetivas futuras para a sua otimização. Testes preliminares de modelos de CA-SOECs baseados em células suportadas por eletrólito de YSZ com ânodo de Ni/YSZ, cátodo de SrFe0.75Mo0.25O3-δ, camadas de barreira à difusão de CGO ou (Y0.9Ca0.1)2Ti2O7-δ no lado do ânodo, e câmara do ânodo preenchida com carbono sólido, mostraram uma diminuição do TCA para ~0 V a 850°C. Isto confirma a funcionalidade do conceito proposto e permite identificar novas abordagens para investigação futura e, consequente, otimização experimental.2025-12-17T00:00:00Z2024-12-13T00:00:00Z2024-12-13doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/43605engBamburov, Aleksandrinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-27T01:50:53Zoai:ria.ua.pt:10773/43605Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:41:51.042294Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
title Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
spellingShingle Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
Bamburov, Aleksandr
Solid oxide electrolysis cell
Carbon-assisted electrolysis
Hydrogen generation
Electrochemical impedance spectroscopy
Electrode
Solid electrolyte
Mixed ionic-electronic conductivity
Thermochemical expansion
Diffusion barrier layer
Perovskite
Pyrochlore
title_short Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
title_full Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
title_fullStr Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
title_full_unstemmed Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
title_sort Solid carbon-assisted steam electrolysis in solid electrolyte cells for energy storage
author Bamburov, Aleksandr
author_facet Bamburov, Aleksandr
author_role author
dc.contributor.author.fl_str_mv Bamburov, Aleksandr
dc.subject.por.fl_str_mv Solid oxide electrolysis cell
Carbon-assisted electrolysis
Hydrogen generation
Electrochemical impedance spectroscopy
Electrode
Solid electrolyte
Mixed ionic-electronic conductivity
Thermochemical expansion
Diffusion barrier layer
Perovskite
Pyrochlore
topic Solid oxide electrolysis cell
Carbon-assisted electrolysis
Hydrogen generation
Electrochemical impedance spectroscopy
Electrode
Solid electrolyte
Mixed ionic-electronic conductivity
Thermochemical expansion
Diffusion barrier layer
Perovskite
Pyrochlore
description The development of solid oxide electrolysis cell (SOEC) technology for generation of green hydrogen using renewable electricity faces challenges due to high-temperature degradation processes, particularly those occurring at the anode/electrolyte interface. Using solid carbon as a depolarizing agent at the anode is an innovative concept enabling the reduction of oxygen chemical potential at the anode/electrolyte interface, thereby eliminating the risks of high oxygen pressures and related degradation factors. This works aimed to explore the concept of carbon assisted electrolysis cell (CA-SOEC) and the materials that could be employed in this type of electrochemical system. The research was focused on the design, fabrication, and detailed characterization of the components for CA-SOEC cells, including the development of an alternative diffusion barrier layer material for operation under reducing conditions (Chapter 3), optimization of the protocol for fabricating Ni/YSZ cathodes (Chapter 4), evaluation of SrFe0.75Mo0.25O3-δ (Chapter 5) and Sr0.85Pr0.15TiO3+δ (Chapter 6) as potential anode materials, and preliminary electrochemical tests of model CA- SOECs (Chapter 7). Pyrochlore-type (Y0.9Ca0.1)2Ti2O7-δ is demonstrated to be a promising candidate for the diffusion barrier layer. This material is a nearly pure ionic conductor in a wide range of p(O2)-T conditions, exhibits acceptable electrical conductivity (4.3×10-2 S/cm at 900°C in air), moderate thermal expansion (TEC = 10.3×10-6 K-1), negligible chemical expansion, and chemically compatible with YSZ electrolyte and SrFe0.75Mo0.25O3-δ electrode. Perovskite-like SrFe0.75Mo0.25O3-δ and Sr0.85Pr0.15TiO3+δ exhibit similar levels of n- type electronic conductivity under reducing conditions. While SrFe0.75Mo0.25O3-δ ceramics show excessive thermochemical expansion at elevated temperature compromising the thermomechanical stability of electrode/electrolyte assembly during p(O2)-T cycling, donor-doped strontium titanates benefit from suitable thermal and insignificant chemical expansion under similar conditions. Although both materials showed moderate electrochemical performance in a diluted hydrogen atmosphere under OCV conditions at 800-850°C, the performed experiments revealed the prospects for their further optimization. Preliminary tests of model CA-SOECs based on electrolyte-supported YSZ cells with Ni/YSZ anode, SrFe0.75Mo0.25O3-δ cathode, CGO or (Y0.9Ca0.1)2Ti2O7-δ diffusion barrier interlayers at the anode side, and anode chamber filled with solid carbon, showed a decrease in OCV to ~0 V at 850°C, confirmed the functionality of the concept, and identified the approaches for future research and experimental optimization
publishDate 2024
dc.date.none.fl_str_mv 2024-12-13T00:00:00Z
2024-12-13
2025-12-17T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/43605
url http://hdl.handle.net/10773/43605
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598263557619712