Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells

Bibliographic Details
Main Author: Costa , Bernardo Filipe Serôdio
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/28144
Summary: The main objective of this work was to assess the possibility of the enhancement of the electrocatalytic activity of Sr(Ti,V)O3-δ fuel electrode components for high-temperature solid electrolyte cells by introducing Ni into the B-sublattice of the perovskite structure with in-situ nanostructuring under operation conditions by exsolution. The work was motivated by the drawbacks of commonly used cermet Ni-YSZ cermet anodes such as long-term microstructural degradation and intolerance to redox changes, sulfur poisoning and carbon deposition. Strontium titanate-vanadates were considered as suitable ceramic components stable under fuel electrode operation conditions and with prospects for sulfur and carbon deposition tolerance, while nano-dispersed Ni was expected to enhance the electrocatalytic activity while avoiding the disadvantages of Ni-YSZ cermets. High-energy mechanochemical route in combination with thermal treatments under controlled reducing atmosphere were employed for the preparation of selected materials with a nominal composition Sr1-xTi1-y-zVyNizO3 (x = 0-0.04, y = 0.2-0.4, z = 0.02-0.12). Detailed analysis of the phase formation in this system revealed that comparatively high thermal treatment temperature (1200°C), required to eliminate the undesired insulating Sr3(VO4)2 intermediate phase in the course of synthesis of Sr(Ti,V)O3 perovskites, results in a segregation of Ni in the form of poorly dispersed submicron metallic particles. Prepared Sr1-x(Ti,V)O3-δ-Ni ceramic materials exhibited a moderate thermal expansion coefficients compatible with that of YSZ solid electrolyte. The electrical conductivity was found to increase with increasing vanadium content in the perovskite phase, while the nominal A-site deficiency had an opposite effect. The electrochemical impedance spectroscopy studies revealed a rather poor activity of Sr1-x(Ti,V)O3-δ-Ni porous electrodes for hydrogen oxidation reaction. This was ascribed to insufficient intrinsic electrocatalytic activity of Sr1-x(Ti,V)O3 perovskites, low expected ionic conduction in these phases, and segregation of Ni particles in the course of synthesis. It was demonstrated that the electrochemical performance of these electrodes can be substantially improved by the infiltrations of gadolinia-doped ceria as oxygen-ion conducting component and small extra amounts of well-dispersed Ni as an electrocatalyst
id RCAP_005848e2fd6641cee7b04ff5623559d5
oai_identifier_str oai:ria.ua.pt:10773/28144
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cellsSolid oxide fuel cellSolid oxide electrolysis cellReversible solid oxide cellFuel electrodeStrontium titanateStrontium vanadateExsolutionElectrical conductivityThermal expansionPolarization resistanceThe main objective of this work was to assess the possibility of the enhancement of the electrocatalytic activity of Sr(Ti,V)O3-δ fuel electrode components for high-temperature solid electrolyte cells by introducing Ni into the B-sublattice of the perovskite structure with in-situ nanostructuring under operation conditions by exsolution. The work was motivated by the drawbacks of commonly used cermet Ni-YSZ cermet anodes such as long-term microstructural degradation and intolerance to redox changes, sulfur poisoning and carbon deposition. Strontium titanate-vanadates were considered as suitable ceramic components stable under fuel electrode operation conditions and with prospects for sulfur and carbon deposition tolerance, while nano-dispersed Ni was expected to enhance the electrocatalytic activity while avoiding the disadvantages of Ni-YSZ cermets. High-energy mechanochemical route in combination with thermal treatments under controlled reducing atmosphere were employed for the preparation of selected materials with a nominal composition Sr1-xTi1-y-zVyNizO3 (x = 0-0.04, y = 0.2-0.4, z = 0.02-0.12). Detailed analysis of the phase formation in this system revealed that comparatively high thermal treatment temperature (1200°C), required to eliminate the undesired insulating Sr3(VO4)2 intermediate phase in the course of synthesis of Sr(Ti,V)O3 perovskites, results in a segregation of Ni in the form of poorly dispersed submicron metallic particles. Prepared Sr1-x(Ti,V)O3-δ-Ni ceramic materials exhibited a moderate thermal expansion coefficients compatible with that of YSZ solid electrolyte. The electrical conductivity was found to increase with increasing vanadium content in the perovskite phase, while the nominal A-site deficiency had an opposite effect. The electrochemical impedance spectroscopy studies revealed a rather poor activity of Sr1-x(Ti,V)O3-δ-Ni porous electrodes for hydrogen oxidation reaction. This was ascribed to insufficient intrinsic electrocatalytic activity of Sr1-x(Ti,V)O3 perovskites, low expected ionic conduction in these phases, and segregation of Ni particles in the course of synthesis. It was demonstrated that the electrochemical performance of these electrodes can be substantially improved by the infiltrations of gadolinia-doped ceria as oxygen-ion conducting component and small extra amounts of well-dispersed Ni as an electrocatalystO principal objetivo deste trabalho foi avaliar a possibilidade de melhoria da atividade eletrocatalítica de elétrodos de combustível Sr(Ti,V)O3-δ utilizados em eletrólitos de alta temperatura, introduzindo Ni na subrede B da estrutura do tipo perovskite, com nanoestruturação in-situ em condições de operação por via de exsolução. Este trabalho teve como motivação as desvantagens associadas ao uso típico de ânodos cermet Ni-YSZ, como degradação da microestrutura a longo termo e intolerância a mudanças redox, contaminação de enxofre e deposição de carbono. Foi considerado o uso de titanato-vanadato de estrôncio como componentes cerâmicos adequados dentro das condições de operação de elétrodos de combustível e com vista a tolerar a deposição de carbono e enxofre, enquanto se perspectivava que Ni nano-dispersado pudesse aumentar a atividade eletrocatalítica, evitando as desvantagens associadas ao cermet Ni-YSZ. Tratamentos mecanoquímicos de alta energia, em combinação com tratamentos térmicos sob atmosferas redutoras foram aplicados na preparação dos materiais selecionados de composição nominal Sr1-xTi1-y-zVyNizO3 (x = 0-0.04, y = 0.2-0.4, z = 0.02-0.12). Análise detalhada à formação de fases no sistema revelou que é necessário um tratamento térmico de relativamente alta temperatura (1200 °C) de modo a eliminar a fase intermédia Sr3(VO4)2, indesejada no curso da síntese de perovskites do tipo Sr(Ti,V)O3, que resulta na segregação do Ni na forma de partículas metálicas abaixo do mícron, deficientemente dispersas. Os cerâmicos Sr1-x(Ti,V)O3-δ-Ni preparados exibiram um coeficiente de expansão térmica moderado, comparativamente ao do eletrólito utilizado YSZ. A condutividade elétrica provou-se aumentar em função da quantidade de vanádio na perovskite, enquanto que deficiência nominal no elemento A provocaria o efeito oposto. Estudos na espectroscopia de impedância eletroquímica revelaram fraca atividade dos elétrodos porosos Sr1-x(Ti,V)O3-δ-Ni em oxidação de hidrogénio. Isto foi atribuído a uma atividade eletrocatalítica intrinsecamente insuficiente, fraca condução iónica destas fases e segregação das partículas de Ni no decorrer da síntese. Ficou demonstrado que a performance eletroquímica destes elétrodos pode ser substancialmente melhorada com a infiltração de soluções contendo Céria dopada com Gadolínia, usada como condutor iónico de oxigénio, assim como soluções da mesma contendo Ni bem disperso de modo a atuar como catalizador2020-04-02T08:47:51Z2019-10-31T00:00:00Z2019-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28144engCosta , Bernardo Filipe Serôdioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:24:54Zoai:ria.ua.pt:10773/28144Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:07:46.175633Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
title Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
spellingShingle Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
Costa , Bernardo Filipe Serôdio
Solid oxide fuel cell
Solid oxide electrolysis cell
Reversible solid oxide cell
Fuel electrode
Strontium titanate
Strontium vanadate
Exsolution
Electrical conductivity
Thermal expansion
Polarization resistance
title_short Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
title_full Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
title_fullStr Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
title_full_unstemmed Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
title_sort Ni-Sr(V,Ti,Ni)O3 electrodes for reversible solid electrolyte cells
author Costa , Bernardo Filipe Serôdio
author_facet Costa , Bernardo Filipe Serôdio
author_role author
dc.contributor.author.fl_str_mv Costa , Bernardo Filipe Serôdio
dc.subject.por.fl_str_mv Solid oxide fuel cell
Solid oxide electrolysis cell
Reversible solid oxide cell
Fuel electrode
Strontium titanate
Strontium vanadate
Exsolution
Electrical conductivity
Thermal expansion
Polarization resistance
topic Solid oxide fuel cell
Solid oxide electrolysis cell
Reversible solid oxide cell
Fuel electrode
Strontium titanate
Strontium vanadate
Exsolution
Electrical conductivity
Thermal expansion
Polarization resistance
description The main objective of this work was to assess the possibility of the enhancement of the electrocatalytic activity of Sr(Ti,V)O3-δ fuel electrode components for high-temperature solid electrolyte cells by introducing Ni into the B-sublattice of the perovskite structure with in-situ nanostructuring under operation conditions by exsolution. The work was motivated by the drawbacks of commonly used cermet Ni-YSZ cermet anodes such as long-term microstructural degradation and intolerance to redox changes, sulfur poisoning and carbon deposition. Strontium titanate-vanadates were considered as suitable ceramic components stable under fuel electrode operation conditions and with prospects for sulfur and carbon deposition tolerance, while nano-dispersed Ni was expected to enhance the electrocatalytic activity while avoiding the disadvantages of Ni-YSZ cermets. High-energy mechanochemical route in combination with thermal treatments under controlled reducing atmosphere were employed for the preparation of selected materials with a nominal composition Sr1-xTi1-y-zVyNizO3 (x = 0-0.04, y = 0.2-0.4, z = 0.02-0.12). Detailed analysis of the phase formation in this system revealed that comparatively high thermal treatment temperature (1200°C), required to eliminate the undesired insulating Sr3(VO4)2 intermediate phase in the course of synthesis of Sr(Ti,V)O3 perovskites, results in a segregation of Ni in the form of poorly dispersed submicron metallic particles. Prepared Sr1-x(Ti,V)O3-δ-Ni ceramic materials exhibited a moderate thermal expansion coefficients compatible with that of YSZ solid electrolyte. The electrical conductivity was found to increase with increasing vanadium content in the perovskite phase, while the nominal A-site deficiency had an opposite effect. The electrochemical impedance spectroscopy studies revealed a rather poor activity of Sr1-x(Ti,V)O3-δ-Ni porous electrodes for hydrogen oxidation reaction. This was ascribed to insufficient intrinsic electrocatalytic activity of Sr1-x(Ti,V)O3 perovskites, low expected ionic conduction in these phases, and segregation of Ni particles in the course of synthesis. It was demonstrated that the electrochemical performance of these electrodes can be substantially improved by the infiltrations of gadolinia-doped ceria as oxygen-ion conducting component and small extra amounts of well-dispersed Ni as an electrocatalyst
publishDate 2019
dc.date.none.fl_str_mv 2019-10-31T00:00:00Z
2019-10-31
2020-04-02T08:47:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28144
url http://hdl.handle.net/10773/28144
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594314078289920