Exportação concluída — 

Computability with polynomial differential equations

Detalhes bibliográficos
Autor(a) principal: Graça, Daniel
Data de Publicação: 2007
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/1027
Resumo: Nesta dissertação iremos analisar um modelo de computação analógica, baseado em equações diferenciais polinomiais. Começa-se por estudar algumas propriedades das equações diferenciais polinomiais, em particular a sua equivalência a outro modelo baseado em circuitos analógicos (GPAC), introduzido por C. Shannon em 1941, e que é uma idealização de um dispositivo físico, o Analisador Diferencial. Seguidamente, estuda-se o poder computacional do modelo. Mais concretamente, mostra-se que ele pode simular máquinas de Turing, de uma forma robusta a erros, pelo que este modelo é capaz de efectuar computações de Tipo-1. Esta simulação é feita em tempo contínuo. Mais, mostramos que utilizando um enquadramento apropriado, o modelo é equivalente à Análise Computável, isto é, à computação de Tipo-2. Finalmente, estudam-se algumas limitações computacionais referentes aos problemas de valor inicial (PVIs) definidos por equações diferenciais ordinárias. Em particular: (i) mostra-se que mesmo que o PVI seja definido por uma função analítica e que a mesma, assim como as condições iniciais, sejam computáveis, o respectivo intervalo maximal de existência da solução não é necessariamente computável; (ii) estabelecem-se limites para o grau de não-computabilidade, mostrando-se que o intervalo maximal é, em condições muito gerais, recursivamente enumerável; (iii) mostra-se que o problema de decidir se o intervalo maximal é ou não limitado é indecídivel, mesmo que se considerem apenas PVIs polinomiais.
id RCAP_403f5ac3f1d20990c8f55dbe084aab83
oai_identifier_str oai:sapientia.ualg.pt:10400.1/1027
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Computability with polynomial differential equationsComputabilidadeIntervalo maximalProblemas de valor inicialEquações diferenciais ordináriasAnálise computávelComputação analógicaNesta dissertação iremos analisar um modelo de computação analógica, baseado em equações diferenciais polinomiais. Começa-se por estudar algumas propriedades das equações diferenciais polinomiais, em particular a sua equivalência a outro modelo baseado em circuitos analógicos (GPAC), introduzido por C. Shannon em 1941, e que é uma idealização de um dispositivo físico, o Analisador Diferencial. Seguidamente, estuda-se o poder computacional do modelo. Mais concretamente, mostra-se que ele pode simular máquinas de Turing, de uma forma robusta a erros, pelo que este modelo é capaz de efectuar computações de Tipo-1. Esta simulação é feita em tempo contínuo. Mais, mostramos que utilizando um enquadramento apropriado, o modelo é equivalente à Análise Computável, isto é, à computação de Tipo-2. Finalmente, estudam-se algumas limitações computacionais referentes aos problemas de valor inicial (PVIs) definidos por equações diferenciais ordinárias. Em particular: (i) mostra-se que mesmo que o PVI seja definido por uma função analítica e que a mesma, assim como as condições iniciais, sejam computáveis, o respectivo intervalo maximal de existência da solução não é necessariamente computável; (ii) estabelecem-se limites para o grau de não-computabilidade, mostrando-se que o intervalo maximal é, em condições muito gerais, recursivamente enumerável; (iii) mostra-se que o problema de decidir se o intervalo maximal é ou não limitado é indecídivel, mesmo que se considerem apenas PVIs polinomiais.SapientiaGraça, Daniel2012-04-14T10:05:19Z20072007-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.1/1027urn:tid:101159129engAUT: DGR01772;info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:41:13Zoai:sapientia.ualg.pt:10400.1/1027Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:31:50.116970Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Computability with polynomial differential equations
title Computability with polynomial differential equations
spellingShingle Computability with polynomial differential equations
Graça, Daniel
Computabilidade
Intervalo maximal
Problemas de valor inicial
Equações diferenciais ordinárias
Análise computável
Computação analógica
title_short Computability with polynomial differential equations
title_full Computability with polynomial differential equations
title_fullStr Computability with polynomial differential equations
title_full_unstemmed Computability with polynomial differential equations
title_sort Computability with polynomial differential equations
author Graça, Daniel
author_facet Graça, Daniel
author_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Graça, Daniel
dc.subject.por.fl_str_mv Computabilidade
Intervalo maximal
Problemas de valor inicial
Equações diferenciais ordinárias
Análise computável
Computação analógica
topic Computabilidade
Intervalo maximal
Problemas de valor inicial
Equações diferenciais ordinárias
Análise computável
Computação analógica
description Nesta dissertação iremos analisar um modelo de computação analógica, baseado em equações diferenciais polinomiais. Começa-se por estudar algumas propriedades das equações diferenciais polinomiais, em particular a sua equivalência a outro modelo baseado em circuitos analógicos (GPAC), introduzido por C. Shannon em 1941, e que é uma idealização de um dispositivo físico, o Analisador Diferencial. Seguidamente, estuda-se o poder computacional do modelo. Mais concretamente, mostra-se que ele pode simular máquinas de Turing, de uma forma robusta a erros, pelo que este modelo é capaz de efectuar computações de Tipo-1. Esta simulação é feita em tempo contínuo. Mais, mostramos que utilizando um enquadramento apropriado, o modelo é equivalente à Análise Computável, isto é, à computação de Tipo-2. Finalmente, estudam-se algumas limitações computacionais referentes aos problemas de valor inicial (PVIs) definidos por equações diferenciais ordinárias. Em particular: (i) mostra-se que mesmo que o PVI seja definido por uma função analítica e que a mesma, assim como as condições iniciais, sejam computáveis, o respectivo intervalo maximal de existência da solução não é necessariamente computável; (ii) estabelecem-se limites para o grau de não-computabilidade, mostrando-se que o intervalo maximal é, em condições muito gerais, recursivamente enumerável; (iii) mostra-se que o problema de decidir se o intervalo maximal é ou não limitado é indecídivel, mesmo que se considerem apenas PVIs polinomiais.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
2012-04-14T10:05:19Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/1027
urn:tid:101159129
url http://hdl.handle.net/10400.1/1027
identifier_str_mv urn:tid:101159129
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv AUT: DGR01772;
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598702334246912