Prediction of students’ grades based on non-academic data
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/89840 |
Summary: | This study examines the use of machine learning techniques to predict Math and Portuguese grades based on student demographics and survey data regarding their school experiences. Using a sample of 53 middle school students, an accuracy rate of 93% was achieved with a support vector machine model. This paper’s findings suggest that non-academic factors such as school climate and student engagement can have a significant impact on academic performance. |
id |
RCAP_3d80c6a90e78aab1d91bc3c55789fead |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/89840 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Prediction of students’ grades based on non-academic dataAcademic performanceEducational data miningMachine learningThis study examines the use of machine learning techniques to predict Math and Portuguese grades based on student demographics and survey data regarding their school experiences. Using a sample of 53 middle school students, an accuracy rate of 93% was achieved with a support vector machine model. This paper’s findings suggest that non-academic factors such as school climate and student engagement can have a significant impact on academic performance.This work is supported by: FCT - Fundação para a Ciên cia e Tecnologia within the RD Units Project Scope: UIDB/00319/2020 and the Northern Regional Operational Programme (NORTE 2020), under Portugal 2020 within the scope of the project “Hello: Plataforma inteligente para o combate ao insucesso escolar”, Ref. NORTE- 01-0247-FEDER-047004 and by FCT– Fundação para a Ciência e Tecnologia within the R&D Units Project Scope:UIDB/00319/2020.SpringerUniversidade do MinhoLacerda, BeatrizMarcondes, Francisco SupinoLima, HenriqueDurães, DalilaNovais, Paulo2023-092023-09-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/89840eng978-3-031-41225-72367-33702367-338910.1007/978-3-031-41226-4_9978-3-031-41226-4https://link.springer.com/chapter/10.1007/978-3-031-41226-4_9info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:06:18Zoai:repositorium.sdum.uminho.pt:1822/89840Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:41:03.807936Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Prediction of students’ grades based on non-academic data |
title |
Prediction of students’ grades based on non-academic data |
spellingShingle |
Prediction of students’ grades based on non-academic data Lacerda, Beatriz Academic performance Educational data mining Machine learning |
title_short |
Prediction of students’ grades based on non-academic data |
title_full |
Prediction of students’ grades based on non-academic data |
title_fullStr |
Prediction of students’ grades based on non-academic data |
title_full_unstemmed |
Prediction of students’ grades based on non-academic data |
title_sort |
Prediction of students’ grades based on non-academic data |
author |
Lacerda, Beatriz |
author_facet |
Lacerda, Beatriz Marcondes, Francisco Supino Lima, Henrique Durães, Dalila Novais, Paulo |
author_role |
author |
author2 |
Marcondes, Francisco Supino Lima, Henrique Durães, Dalila Novais, Paulo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Lacerda, Beatriz Marcondes, Francisco Supino Lima, Henrique Durães, Dalila Novais, Paulo |
dc.subject.por.fl_str_mv |
Academic performance Educational data mining Machine learning |
topic |
Academic performance Educational data mining Machine learning |
description |
This study examines the use of machine learning techniques to predict Math and Portuguese grades based on student demographics and survey data regarding their school experiences. Using a sample of 53 middle school students, an accuracy rate of 93% was achieved with a support vector machine model. This paper’s findings suggest that non-academic factors such as school climate and student engagement can have a significant impact on academic performance. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 2023-09-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/89840 |
url |
https://hdl.handle.net/1822/89840 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-031-41225-7 2367-3370 2367-3389 10.1007/978-3-031-41226-4_9 978-3-031-41226-4 https://link.springer.com/chapter/10.1007/978-3-031-41226-4_9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595472705486848 |