LogicWiSARD: Memoryless synthesis of weightless neural networks

Bibliographic Details
Main Author: Miranda, I. D. S.
Publication Date: 2022
Other Authors: Arora, A., Susskind, Z., Villon, L. A. Q., Katopodis, R. F., Dutra, D. L. C., Araújo, L. S. de., Lima, P. M. V., França, F. M. G., John, L. K., Breternitz Jr., M.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/26404
Summary: Weightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%.
id RCAP_3c68b45da55031c0a2ff88b5d141dc10
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/26404
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling LogicWiSARD: Memoryless synthesis of weightless neural networksWeightless neural networksWiSARDFPGAVLSIWeightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%.IEEE2022-11-09T16:01:50Z2022-01-01T00:00:00Z20222022-11-09T16:00:13Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/26404eng978-1-6654-8308-72160-051110.1109/ASAP54787.2022.00014Miranda, I. D. S.Arora, A.Susskind, Z.Villon, L. A. Q.Katopodis, R. F.Dutra, D. L. C.Araújo, L. S. de.Lima, P. M. V.França, F. M. G.John, L. K.Breternitz Jr., M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:20:30Zoai:repositorio.iscte-iul.pt:10071/26404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:21:04.618744Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv LogicWiSARD: Memoryless synthesis of weightless neural networks
title LogicWiSARD: Memoryless synthesis of weightless neural networks
spellingShingle LogicWiSARD: Memoryless synthesis of weightless neural networks
Miranda, I. D. S.
Weightless neural networks
WiSARD
FPGA
VLSI
title_short LogicWiSARD: Memoryless synthesis of weightless neural networks
title_full LogicWiSARD: Memoryless synthesis of weightless neural networks
title_fullStr LogicWiSARD: Memoryless synthesis of weightless neural networks
title_full_unstemmed LogicWiSARD: Memoryless synthesis of weightless neural networks
title_sort LogicWiSARD: Memoryless synthesis of weightless neural networks
author Miranda, I. D. S.
author_facet Miranda, I. D. S.
Arora, A.
Susskind, Z.
Villon, L. A. Q.
Katopodis, R. F.
Dutra, D. L. C.
Araújo, L. S. de.
Lima, P. M. V.
França, F. M. G.
John, L. K.
Breternitz Jr., M.
author_role author
author2 Arora, A.
Susskind, Z.
Villon, L. A. Q.
Katopodis, R. F.
Dutra, D. L. C.
Araújo, L. S. de.
Lima, P. M. V.
França, F. M. G.
John, L. K.
Breternitz Jr., M.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Miranda, I. D. S.
Arora, A.
Susskind, Z.
Villon, L. A. Q.
Katopodis, R. F.
Dutra, D. L. C.
Araújo, L. S. de.
Lima, P. M. V.
França, F. M. G.
John, L. K.
Breternitz Jr., M.
dc.subject.por.fl_str_mv Weightless neural networks
WiSARD
FPGA
VLSI
topic Weightless neural networks
WiSARD
FPGA
VLSI
description Weightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-09T16:01:50Z
2022-01-01T00:00:00Z
2022
2022-11-09T16:00:13Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/26404
url http://hdl.handle.net/10071/26404
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-6654-8308-7
2160-0511
10.1109/ASAP54787.2022.00014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597352868315136