COIN: Combinational Intelligent Networks
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Other Authors: | , , , , , , , , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10071/29488 |
Summary: | We introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available. |
| id |
RCAP_4a6271be4e014a199896364ebdb94a3c |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29488 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
COIN: Combinational Intelligent NetworksWeightless neural networksLogicWiSARDBinary neural networksFPGAASICWe introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available.IEEE2025-10-01T00:00:00Z2023-01-01T00:00:00Z20232023-10-30T12:12:16Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/29488eng979-8-3503-4685-52160-051110.1109/ASAP57973.2023.00016Miranda, I. D. S.Arora, A.Susskind, Z.Souza, J. S. A.Jadhao, M. P.Villon, L. A. Q.Dutra, D. L. C.Lima, P. M. V.França, F. M. G.Breternitz Jr., M.John, L. K.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:19:34Zoai:repositorio.iscte-iul.pt:10071/29488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:20:47.905430Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
COIN: Combinational Intelligent Networks |
| title |
COIN: Combinational Intelligent Networks |
| spellingShingle |
COIN: Combinational Intelligent Networks Miranda, I. D. S. Weightless neural networks LogicWiSARD Binary neural networks FPGA ASIC |
| title_short |
COIN: Combinational Intelligent Networks |
| title_full |
COIN: Combinational Intelligent Networks |
| title_fullStr |
COIN: Combinational Intelligent Networks |
| title_full_unstemmed |
COIN: Combinational Intelligent Networks |
| title_sort |
COIN: Combinational Intelligent Networks |
| author |
Miranda, I. D. S. |
| author_facet |
Miranda, I. D. S. Arora, A. Susskind, Z. Souza, J. S. A. Jadhao, M. P. Villon, L. A. Q. Dutra, D. L. C. Lima, P. M. V. França, F. M. G. Breternitz Jr., M. John, L. K. |
| author_role |
author |
| author2 |
Arora, A. Susskind, Z. Souza, J. S. A. Jadhao, M. P. Villon, L. A. Q. Dutra, D. L. C. Lima, P. M. V. França, F. M. G. Breternitz Jr., M. John, L. K. |
| author2_role |
author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Miranda, I. D. S. Arora, A. Susskind, Z. Souza, J. S. A. Jadhao, M. P. Villon, L. A. Q. Dutra, D. L. C. Lima, P. M. V. França, F. M. G. Breternitz Jr., M. John, L. K. |
| dc.subject.por.fl_str_mv |
Weightless neural networks LogicWiSARD Binary neural networks FPGA ASIC |
| topic |
Weightless neural networks LogicWiSARD Binary neural networks FPGA ASIC |
| description |
We introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-01-01T00:00:00Z 2023 2023-10-30T12:12:16Z 2025-10-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29488 |
| url |
http://hdl.handle.net/10071/29488 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
979-8-3503-4685-5 2160-0511 10.1109/ASAP57973.2023.00016 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597348295475200 |