COIN: Combinational Intelligent Networks

Bibliographic Details
Main Author: Miranda, I. D. S.
Publication Date: 2023
Other Authors: Arora, A., Susskind, Z., Souza, J. S. A., Jadhao, M. P., Villon, L. A. Q., Dutra, D. L. C., Lima, P. M. V., França, F. M. G., Breternitz Jr., M., John, L. K.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/29488
Summary: We introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available.
id RCAP_4a6271be4e014a199896364ebdb94a3c
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/29488
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling COIN: Combinational Intelligent NetworksWeightless neural networksLogicWiSARDBinary neural networksFPGAASICWe introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available.IEEE2025-10-01T00:00:00Z2023-01-01T00:00:00Z20232023-10-30T12:12:16Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/29488eng979-8-3503-4685-52160-051110.1109/ASAP57973.2023.00016Miranda, I. D. S.Arora, A.Susskind, Z.Souza, J. S. A.Jadhao, M. P.Villon, L. A. Q.Dutra, D. L. C.Lima, P. M. V.França, F. M. G.Breternitz Jr., M.John, L. K.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:19:34Zoai:repositorio.iscte-iul.pt:10071/29488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:20:47.905430Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv COIN: Combinational Intelligent Networks
title COIN: Combinational Intelligent Networks
spellingShingle COIN: Combinational Intelligent Networks
Miranda, I. D. S.
Weightless neural networks
LogicWiSARD
Binary neural networks
FPGA
ASIC
title_short COIN: Combinational Intelligent Networks
title_full COIN: Combinational Intelligent Networks
title_fullStr COIN: Combinational Intelligent Networks
title_full_unstemmed COIN: Combinational Intelligent Networks
title_sort COIN: Combinational Intelligent Networks
author Miranda, I. D. S.
author_facet Miranda, I. D. S.
Arora, A.
Susskind, Z.
Souza, J. S. A.
Jadhao, M. P.
Villon, L. A. Q.
Dutra, D. L. C.
Lima, P. M. V.
França, F. M. G.
Breternitz Jr., M.
John, L. K.
author_role author
author2 Arora, A.
Susskind, Z.
Souza, J. S. A.
Jadhao, M. P.
Villon, L. A. Q.
Dutra, D. L. C.
Lima, P. M. V.
França, F. M. G.
Breternitz Jr., M.
John, L. K.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Miranda, I. D. S.
Arora, A.
Susskind, Z.
Souza, J. S. A.
Jadhao, M. P.
Villon, L. A. Q.
Dutra, D. L. C.
Lima, P. M. V.
França, F. M. G.
Breternitz Jr., M.
John, L. K.
dc.subject.por.fl_str_mv Weightless neural networks
LogicWiSARD
Binary neural networks
FPGA
ASIC
topic Weightless neural networks
LogicWiSARD
Binary neural networks
FPGA
ASIC
description We introduce Combinational Intelligent Networks (COIN), a machine learning technique that targets edge inference using low-resourced FPGAs or ASICs. COIN is an improvement on LogicWiSARD, a recent weightless neural network that achieves low power, small area, and high throughput. We convert the LogicWiSARD model into a binary neural network, train it using backpropagation, and then convert it to a COIN model. As a result, COIN can achieve higher accuracy than LogicWiSARD or it can require significantly fewer hardware resources when comparing models with similar accuracies. In comparison to a BNN implementation, FINN, small and large COIN models are more energy efficient demonstrating up to 11.5x higher inferences/Joule at similar accuracy. Our tool executes the complete flow, from training to RTL. and is publicly available.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2023-10-30T12:12:16Z
2025-10-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/29488
url http://hdl.handle.net/10071/29488
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 979-8-3503-4685-5
2160-0511
10.1109/ASAP57973.2023.00016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597348295475200