LogicWiSARD: Memoryless synthesis of weightless neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10071/26404 |
Resumo: | Weightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%. |
id |
RCAP_3c68b45da55031c0a2ff88b5d141dc10 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/26404 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
LogicWiSARD: Memoryless synthesis of weightless neural networksWeightless neural networksWiSARDFPGAVLSIWeightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%.IEEE2022-11-09T16:01:50Z2022-01-01T00:00:00Z20222022-11-09T16:00:13Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/26404eng978-1-6654-8308-72160-051110.1109/ASAP54787.2022.00014Miranda, I. D. S.Arora, A.Susskind, Z.Villon, L. A. Q.Katopodis, R. F.Dutra, D. L. C.Araújo, L. S. de.Lima, P. M. V.França, F. M. G.John, L. K.Breternitz Jr., M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:20:30Zoai:repositorio.iscte-iul.pt:10071/26404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:21:04.618744Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
title |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
spellingShingle |
LogicWiSARD: Memoryless synthesis of weightless neural networks Miranda, I. D. S. Weightless neural networks WiSARD FPGA VLSI |
title_short |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
title_full |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
title_fullStr |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
title_full_unstemmed |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
title_sort |
LogicWiSARD: Memoryless synthesis of weightless neural networks |
author |
Miranda, I. D. S. |
author_facet |
Miranda, I. D. S. Arora, A. Susskind, Z. Villon, L. A. Q. Katopodis, R. F. Dutra, D. L. C. Araújo, L. S. de. Lima, P. M. V. França, F. M. G. John, L. K. Breternitz Jr., M. |
author_role |
author |
author2 |
Arora, A. Susskind, Z. Villon, L. A. Q. Katopodis, R. F. Dutra, D. L. C. Araújo, L. S. de. Lima, P. M. V. França, F. M. G. John, L. K. Breternitz Jr., M. |
author2_role |
author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Miranda, I. D. S. Arora, A. Susskind, Z. Villon, L. A. Q. Katopodis, R. F. Dutra, D. L. C. Araújo, L. S. de. Lima, P. M. V. França, F. M. G. John, L. K. Breternitz Jr., M. |
dc.subject.por.fl_str_mv |
Weightless neural networks WiSARD FPGA VLSI |
topic |
Weightless neural networks WiSARD FPGA VLSI |
description |
Weightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-09T16:01:50Z 2022-01-01T00:00:00Z 2022 2022-11-09T16:00:13Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/26404 |
url |
http://hdl.handle.net/10071/26404 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-6654-8308-7 2160-0511 10.1109/ASAP54787.2022.00014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597352868315136 |