Export Ready — 

On optimal extended row distance profile

Detalhes bibliográficos
Autor(a) principal: Almeida, P.
Data de Publicação: 2017
Outros Autores: Napp, D., Pinto, R.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/17410
Resumo: In this paper, we investigate extended row distances of Unit Memory (UM) convolutional codes. In particular, we derive upper and lower bounds for these distances and moreover present a concrete construction of a UM convolutional code that almost achieves the derived upper bounds. The generator matrix of these codes is built by means of a particular class of matrices, called superregular matrices. We actually conjecture that the construction presented is optimal with respect to the extended row distances as it achieves the maximum extended row distances possible. This in particular implies that the upper bound derived is not completely tight. The results presented in this paper further develop the line of research devoted to the distance properties of convolutional codes which has been mainly focused on the notions of free distance and column distance. Some open problems are left for further research.
id RCAP_33bb85ec7992e9d9b8f2c86cc495a53d
oai_identifier_str oai:ria.ua.pt:10773/17410
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On optimal extended row distance profileConvolutional codesSuperregular matricesUnimemory convolutional codesMaximum Distance Profile (MDP)Maximum Distance Separable (MDS)In this paper, we investigate extended row distances of Unit Memory (UM) convolutional codes. In particular, we derive upper and lower bounds for these distances and moreover present a concrete construction of a UM convolutional code that almost achieves the derived upper bounds. The generator matrix of these codes is built by means of a particular class of matrices, called superregular matrices. We actually conjecture that the construction presented is optimal with respect to the extended row distances as it achieves the maximum extended row distances possible. This in particular implies that the upper bound derived is not completely tight. The results presented in this paper further develop the line of research devoted to the distance properties of convolutional codes which has been mainly focused on the notions of free distance and column distance. Some open problems are left for further research.Springer2017-05-13T15:24:14Z2017-01-04T00:00:00Z2017-01-04book partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/17410eng978-3-319-49982-610.1007/978-3-319-49984-0_4Almeida, P.Napp, D.Pinto, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:01:04Zoai:ria.ua.pt:10773/17410Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:54:38.855189Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On optimal extended row distance profile
title On optimal extended row distance profile
spellingShingle On optimal extended row distance profile
Almeida, P.
Convolutional codes
Superregular matrices
Unimemory convolutional codes
Maximum Distance Profile (MDP)
Maximum Distance Separable (MDS)
title_short On optimal extended row distance profile
title_full On optimal extended row distance profile
title_fullStr On optimal extended row distance profile
title_full_unstemmed On optimal extended row distance profile
title_sort On optimal extended row distance profile
author Almeida, P.
author_facet Almeida, P.
Napp, D.
Pinto, R.
author_role author
author2 Napp, D.
Pinto, R.
author2_role author
author
dc.contributor.author.fl_str_mv Almeida, P.
Napp, D.
Pinto, R.
dc.subject.por.fl_str_mv Convolutional codes
Superregular matrices
Unimemory convolutional codes
Maximum Distance Profile (MDP)
Maximum Distance Separable (MDS)
topic Convolutional codes
Superregular matrices
Unimemory convolutional codes
Maximum Distance Profile (MDP)
Maximum Distance Separable (MDS)
description In this paper, we investigate extended row distances of Unit Memory (UM) convolutional codes. In particular, we derive upper and lower bounds for these distances and moreover present a concrete construction of a UM convolutional code that almost achieves the derived upper bounds. The generator matrix of these codes is built by means of a particular class of matrices, called superregular matrices. We actually conjecture that the construction presented is optimal with respect to the extended row distances as it achieves the maximum extended row distances possible. This in particular implies that the upper bound derived is not completely tight. The results presented in this paper further develop the line of research devoted to the distance properties of convolutional codes which has been mainly focused on the notions of free distance and column distance. Some open problems are left for further research.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-13T15:24:14Z
2017-01-04T00:00:00Z
2017-01-04
dc.type.driver.fl_str_mv book part
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/17410
url http://hdl.handle.net/10773/17410
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-319-49982-6
10.1007/978-3-319-49984-0_4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594178270920704