Maximum distance separable 2D convolutional codes
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/15106 |
Summary: | Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure. |
id |
RCAP_4a0016c4b71f471fdb2bea32782a6af8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15106 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Maximum distance separable 2D convolutional codes2D convolutional codeCirculant Cauchy matrixGeneralized Singleton boundMaximum distance separable codeSuperregular matrixMaximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure.IEEE2016-01-21T17:10:52Z2016-02-01T00:00:00Z2016-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15106eng0018-944810.1109/TIT.2015.2509075Climent, J.-J.Napp, D.Perea, C.Pinto, Raquelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:01Zoai:ria.ua.pt:10773/15106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:26.333777Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Maximum distance separable 2D convolutional codes |
title |
Maximum distance separable 2D convolutional codes |
spellingShingle |
Maximum distance separable 2D convolutional codes Climent, J.-J. 2D convolutional code Circulant Cauchy matrix Generalized Singleton bound Maximum distance separable code Superregular matrix |
title_short |
Maximum distance separable 2D convolutional codes |
title_full |
Maximum distance separable 2D convolutional codes |
title_fullStr |
Maximum distance separable 2D convolutional codes |
title_full_unstemmed |
Maximum distance separable 2D convolutional codes |
title_sort |
Maximum distance separable 2D convolutional codes |
author |
Climent, J.-J. |
author_facet |
Climent, J.-J. Napp, D. Perea, C. Pinto, Raquel |
author_role |
author |
author2 |
Napp, D. Perea, C. Pinto, Raquel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Climent, J.-J. Napp, D. Perea, C. Pinto, Raquel |
dc.subject.por.fl_str_mv |
2D convolutional code Circulant Cauchy matrix Generalized Singleton bound Maximum distance separable code Superregular matrix |
topic |
2D convolutional code Circulant Cauchy matrix Generalized Singleton bound Maximum distance separable code Superregular matrix |
description |
Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-21T17:10:52Z 2016-02-01T00:00:00Z 2016-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15106 |
url |
http://hdl.handle.net/10773/15106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0018-9448 10.1109/TIT.2015.2509075 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594134401646592 |