Industrial visual inspection of lime granules by neural networks

Detalhes bibliográficos
Autor(a) principal: Carvalho, P.
Data de Publicação: 1998
Outros Autores: Costa, N., Ribeiro, B., Dourado, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/4117
https://doi.org/10.1016/s0360-8352(98)00153-3
Resumo: Lime granule quality inspection is an important task in the pulp and paper industry. In this paper a new method, build-up on a neural network and a path search method, is introduced for lime granule automatic visual inspection. Several correction steps to Landau's method are also introduced.
id RCAP_30154fb001369e19211d0b6c84e70b64
oai_identifier_str oai:estudogeral.uc.pt:10316/4117
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Industrial visual inspection of lime granules by neural networksAutomatic visual inspectionElliptical objects localisationNeural networksPulp and paper industryLime granule quality inspection is an important task in the pulp and paper industry. In this paper a new method, build-up on a neural network and a path search method, is introduced for lime granule automatic visual inspection. Several correction steps to Landau's method are also introduced.http://www.sciencedirect.com/science/article/B6V27-3WXX91K-1C/1/0b2b4fa00edc54eb3670b9819890f8ad1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttps://hdl.handle.net/10316/4117https://hdl.handle.net/10316/4117https://doi.org/10.1016/s0360-8352(98)00153-3engComputers & Industrial Engineering. 35:3-4 (1998) 539-542Carvalho, P.Costa, N.Ribeiro, B.Dourado, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-11-06T16:59:48Zoai:estudogeral.uc.pt:10316/4117Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:19:19.312869Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Industrial visual inspection of lime granules by neural networks
title Industrial visual inspection of lime granules by neural networks
spellingShingle Industrial visual inspection of lime granules by neural networks
Carvalho, P.
Automatic visual inspection
Elliptical objects localisation
Neural networks
Pulp and paper industry
title_short Industrial visual inspection of lime granules by neural networks
title_full Industrial visual inspection of lime granules by neural networks
title_fullStr Industrial visual inspection of lime granules by neural networks
title_full_unstemmed Industrial visual inspection of lime granules by neural networks
title_sort Industrial visual inspection of lime granules by neural networks
author Carvalho, P.
author_facet Carvalho, P.
Costa, N.
Ribeiro, B.
Dourado, A.
author_role author
author2 Costa, N.
Ribeiro, B.
Dourado, A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Carvalho, P.
Costa, N.
Ribeiro, B.
Dourado, A.
dc.subject.por.fl_str_mv Automatic visual inspection
Elliptical objects localisation
Neural networks
Pulp and paper industry
topic Automatic visual inspection
Elliptical objects localisation
Neural networks
Pulp and paper industry
description Lime granule quality inspection is an important task in the pulp and paper industry. In this paper a new method, build-up on a neural network and a path search method, is introduced for lime granule automatic visual inspection. Several correction steps to Landau's method are also introduced.
publishDate 1998
dc.date.none.fl_str_mv 1998
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/4117
https://hdl.handle.net/10316/4117
https://doi.org/10.1016/s0360-8352(98)00153-3
url https://hdl.handle.net/10316/4117
https://doi.org/10.1016/s0360-8352(98)00153-3
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers & Industrial Engineering. 35:3-4 (1998) 539-542
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602318923202560