An automatic system for dirt in pulp inspection using hierarchical image segmentation
Main Author: | |
---|---|
Publication Date: | 1999 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/4112 https://doi.org/10.1016/s0360-8352(99)00089-3 |
Summary: | An automatic visual inspection system designed for dirt inspection in the pulp and paper industry is presented. A new hierarchical region oriented segmentation algorithm is introduced. The algorithm is tuned according to the singular characteristics of the pulp samples. A criterion based on the maximisation of the local contrast is defined in order to perform a defect region segmentation of the pulp and paper images. Some optimisations are introduced to avoid an excessive computational load. |
id |
RCAP_f19ea7ca22cacf2afce992953d2e510a |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4112 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
An automatic system for dirt in pulp inspection using hierarchical image segmentationQuality ControlAutomatic Visual InspectionProductionPulp and PaperComputer VisionPattern RecognitionAn automatic visual inspection system designed for dirt inspection in the pulp and paper industry is presented. A new hierarchical region oriented segmentation algorithm is introduced. The algorithm is tuned according to the singular characteristics of the pulp samples. A criterion based on the maximisation of the local contrast is defined in order to perform a defect region segmentation of the pulp and paper images. Some optimisations are introduced to avoid an excessive computational load.http://www.sciencedirect.com/science/article/B6V27-3XR260K-2T/1/aa6b716fc7193b3d447bff73516ce10d1999info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttps://hdl.handle.net/10316/4112https://hdl.handle.net/10316/4112https://doi.org/10.1016/s0360-8352(99)00089-3engComputers & Industrial Engineering. 37:1-2 (1999) 343-346Duarte, F.Araújo, H.Dourado, A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-11-06T16:59:48Zoai:estudogeral.uc.pt:10316/4112Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:19:19.023145Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
title |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
spellingShingle |
An automatic system for dirt in pulp inspection using hierarchical image segmentation Duarte, F. Quality Control Automatic Visual Inspection Production Pulp and Paper Computer Vision Pattern Recognition |
title_short |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
title_full |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
title_fullStr |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
title_full_unstemmed |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
title_sort |
An automatic system for dirt in pulp inspection using hierarchical image segmentation |
author |
Duarte, F. |
author_facet |
Duarte, F. Araújo, H. Dourado, A. |
author_role |
author |
author2 |
Araújo, H. Dourado, A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Duarte, F. Araújo, H. Dourado, A. |
dc.subject.por.fl_str_mv |
Quality Control Automatic Visual Inspection Production Pulp and Paper Computer Vision Pattern Recognition |
topic |
Quality Control Automatic Visual Inspection Production Pulp and Paper Computer Vision Pattern Recognition |
description |
An automatic visual inspection system designed for dirt inspection in the pulp and paper industry is presented. A new hierarchical region oriented segmentation algorithm is introduced. The algorithm is tuned according to the singular characteristics of the pulp samples. A criterion based on the maximisation of the local contrast is defined in order to perform a defect region segmentation of the pulp and paper images. Some optimisations are introduced to avoid an excessive computational load. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/4112 https://hdl.handle.net/10316/4112 https://doi.org/10.1016/s0360-8352(99)00089-3 |
url |
https://hdl.handle.net/10316/4112 https://doi.org/10.1016/s0360-8352(99)00089-3 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computers & Industrial Engineering. 37:1-2 (1999) 343-346 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602318914813952 |