Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
| Main Author: | |
|---|---|
| Publication Date: | 2016 |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://repositorio.inesctec.pt/handle/123456789/4121 http://dx.doi.org/10.1080/01490419.2016.1144665 |
Summary: | Satellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event. |
| id |
RCAP_2c99a17b31565ce15b58ea0eb2bc3de2 |
|---|---|
| oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/4121 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Trends in Extreme Mean Sea Level Quantiles from Satellite AltimetrySatellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event.2017-12-14T17:50:57Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4121http://dx.doi.org/10.1080/01490419.2016.1144665engSusana Alexandra Barbosainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:19:37Zoai:repositorio.inesctec.pt:123456789/4121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:56:19.444061Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| title |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| spellingShingle |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry Susana Alexandra Barbosa |
| title_short |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| title_full |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| title_fullStr |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| title_full_unstemmed |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| title_sort |
Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry |
| author |
Susana Alexandra Barbosa |
| author_facet |
Susana Alexandra Barbosa |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Susana Alexandra Barbosa |
| description |
Satellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2017-12-14T17:50:57Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/4121 http://dx.doi.org/10.1080/01490419.2016.1144665 |
| url |
http://repositorio.inesctec.pt/handle/123456789/4121 http://dx.doi.org/10.1080/01490419.2016.1144665 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597765680103424 |