Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry

Detalhes bibliográficos
Autor(a) principal: Susana Alexandra Barbosa
Data de Publicação: 2016
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/4121
http://dx.doi.org/10.1080/01490419.2016.1144665
Resumo: Satellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event.
id RCAP_2c99a17b31565ce15b58ea0eb2bc3de2
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4121
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Trends in Extreme Mean Sea Level Quantiles from Satellite AltimetrySatellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event.2017-12-14T17:50:57Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4121http://dx.doi.org/10.1080/01490419.2016.1144665engSusana Alexandra Barbosainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:19:37Zoai:repositorio.inesctec.pt:123456789/4121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:56:19.444061Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
title Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
spellingShingle Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
Susana Alexandra Barbosa
title_short Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
title_full Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
title_fullStr Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
title_full_unstemmed Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
title_sort Trends in Extreme Mean Sea Level Quantiles from Satellite Altimetry
author Susana Alexandra Barbosa
author_facet Susana Alexandra Barbosa
author_role author
dc.contributor.author.fl_str_mv Susana Alexandra Barbosa
description Satellite altimetry allows the study of sea-level long-term variability on a global and spatially uniform basis. Here quantile regression is applied to derive robust median regression trends of mean sea level as well as trends in extreme quantiles from radar altimetry time series. In contrast with ordinary least squares regression, which only provides an estimate on the rate of change of the mean of data distribution, quantile regression allows the estimation of trends at different quantiles of the data distribution, yielding a more complete picture of long-term variability. Trends derived from basin-wide averaged regional mean sea level time series are robust and similar for all quantiles, indicating that all parts of the data distribution are changing at the same rate. In contrast, trends are not robust and diverge across quantiles in the case of local time series. Trends are under- (over-)estimated in the western (eastern) equatorial Pacific. Furthermore, trends in the lowermost quantile (0.05) are larger than the median trend in the western Pacific, while trends in the uppermost quantile (0.95) are lower than the median trend in the eastern Pacific. These differences in trends in extreme mean sea level quantiles are explained by the exceptional effect of the strong 1997-1998 El Nino-Southern Oscillation (ENSO) event.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2017-12-14T17:50:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4121
http://dx.doi.org/10.1080/01490419.2016.1144665
url http://repositorio.inesctec.pt/handle/123456789/4121
http://dx.doi.org/10.1080/01490419.2016.1144665
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597765680103424