FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/23629 |
Summary: | In recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels. |
id |
RCAP_29a8d68260b63d5f2b06adb5ccf0c982 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/23629 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
FuzzTheREST - Intelligent Automated Blackbox RESTful API FuzzerAutomated Software TestingReinforcement LearningFuzzy TestingSoftware QualityRESTful APIsTestagem de Software AutomatizadaAprendizagem por ReforçoTestagem FuzzyQualidade de SoftwareAPIs RESTfulIn recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels.Pereira, Isabel Cecília Correia da Silva Praça GomesREPOSITÓRIO P.PORTODias, Tiago Fontes2023-10-02T10:05:08Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23629urn:tid:203360184enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:19:53Zoai:recipp.ipp.pt:10400.22/23629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:48:45.470366Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
title |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
spellingShingle |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer Dias, Tiago Fontes Automated Software Testing Reinforcement Learning Fuzzy Testing Software Quality RESTful APIs Testagem de Software Automatizada Aprendizagem por Reforço Testagem Fuzzy Qualidade de Software APIs RESTful |
title_short |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
title_full |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
title_fullStr |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
title_full_unstemmed |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
title_sort |
FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer |
author |
Dias, Tiago Fontes |
author_facet |
Dias, Tiago Fontes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Isabel Cecília Correia da Silva Praça Gomes REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Dias, Tiago Fontes |
dc.subject.por.fl_str_mv |
Automated Software Testing Reinforcement Learning Fuzzy Testing Software Quality RESTful APIs Testagem de Software Automatizada Aprendizagem por Reforço Testagem Fuzzy Qualidade de Software APIs RESTful |
topic |
Automated Software Testing Reinforcement Learning Fuzzy Testing Software Quality RESTful APIs Testagem de Software Automatizada Aprendizagem por Reforço Testagem Fuzzy Qualidade de Software APIs RESTful |
description |
In recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-02T10:05:08Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/23629 urn:tid:203360184 |
url |
http://hdl.handle.net/10400.22/23629 |
identifier_str_mv |
urn:tid:203360184 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600707591143424 |