FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer

Bibliographic Details
Main Author: Dias, Tiago Fontes
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/23629
Summary: In recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels.
id RCAP_29a8d68260b63d5f2b06adb5ccf0c982
oai_identifier_str oai:recipp.ipp.pt:10400.22/23629
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling FuzzTheREST - Intelligent Automated Blackbox RESTful API FuzzerAutomated Software TestingReinforcement LearningFuzzy TestingSoftware QualityRESTful APIsTestagem de Software AutomatizadaAprendizagem por ReforçoTestagem FuzzyQualidade de SoftwareAPIs RESTfulIn recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels.Pereira, Isabel Cecília Correia da Silva Praça GomesREPOSITÓRIO P.PORTODias, Tiago Fontes2023-10-02T10:05:08Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23629urn:tid:203360184enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:19:53Zoai:recipp.ipp.pt:10400.22/23629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:48:45.470366Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
title FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
spellingShingle FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
Dias, Tiago Fontes
Automated Software Testing
Reinforcement Learning
Fuzzy Testing
Software Quality
RESTful APIs
Testagem de Software Automatizada
Aprendizagem por Reforço
Testagem Fuzzy
Qualidade de Software
APIs RESTful
title_short FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
title_full FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
title_fullStr FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
title_full_unstemmed FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
title_sort FuzzTheREST - Intelligent Automated Blackbox RESTful API Fuzzer
author Dias, Tiago Fontes
author_facet Dias, Tiago Fontes
author_role author
dc.contributor.none.fl_str_mv Pereira, Isabel Cecília Correia da Silva Praça Gomes
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Dias, Tiago Fontes
dc.subject.por.fl_str_mv Automated Software Testing
Reinforcement Learning
Fuzzy Testing
Software Quality
RESTful APIs
Testagem de Software Automatizada
Aprendizagem por Reforço
Testagem Fuzzy
Qualidade de Software
APIs RESTful
topic Automated Software Testing
Reinforcement Learning
Fuzzy Testing
Software Quality
RESTful APIs
Testagem de Software Automatizada
Aprendizagem por Reforço
Testagem Fuzzy
Qualidade de Software
APIs RESTful
description In recent years, the pervasive influence of technology has deeply intertwined with human life, impacting diverse fields. This relationship has evolved into a dependency, with software systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of software is accessed through Application Programming Interfaces, particularly web APIs, which predominantly adhere to the Representational State Transfer architecture. However, this architectural choice introduces a wide range of potential vulnerabilities, which are available and accessible at a network level. The significance of Software testing becomes evident when considering the widespread use of software in various daily tasks that impact personal safety and security, making the identification and assessment of faulty software of paramount importance. In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with the primary aim of addressing the challenges associated with understanding the context of each system under test and conducting comprehensive automated testing using diverse inputs. Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations, relying on mutation methods for input exploration. The system's value is further enhanced through the provision of a thoroughly documented vulnerability discovery process for the user. This proposal stands out for its emphasis on explainability and the application of RL to learn the context of each API, thus eliminating the necessity for source code knowledge and expediting the testing process. The developed solution adheres rigorously to software engineering best practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized environment for API Fuzzy Testing and a Multi-table Q-Learning Agent. The quality and applicability of the tool developed are also assessed, relying on the results achieved on two case studies, involving the Petstore API and an Emotion Detection module which was part of the CyberFactory#1 European research project. The results demonstrate the tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and the agents' ability to learn different API contexts relying on API responses while maintaining reasonable code coverage levels.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-02T10:05:08Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/23629
urn:tid:203360184
url http://hdl.handle.net/10400.22/23629
identifier_str_mv urn:tid:203360184
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600707591143424