Export Ready — 

Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge

Bibliographic Details
Main Author: Banhudo, Guilherme Sousa Falcão Duarte
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/19197
Summary: In 1995, the Basel Committee on Banking Supervision emitted an amendment to the first Basel Accord, allowing financial institutions to develop internal risk models, based on the value-at-risk (VaR), as opposed to using the regulator’s predefined model. From that point onwards, the scientific community has focused its efforts on improving the accuracy of the VaR models to reduce the capital requirements stipulated by the regulatory framework. In contrast, some authors proposed that the key towards disclosure optimization would not lie in improving the existing models, but in manipulating the estimated value. The most recent progress in this field employed dynamic programming (DP), based on Markov decision processes (MDPs), to create a daily report policy. However, the use of dynamic programming carries heavy costs for the solution; not only does the algorithm require an explicit transition probability matrix, the high computational storage requirements and inability to operate in continuous MDPs demand simplifying the problem. The purpose of this work is to introduce deep reinforcement learning as an alternative to solving problems characterized by a complex or continuous MDP. To this end, the author benchmarks the DP generated policy with one generated via proximal policy optimization. In conclusion, and despite the small number of employed learning iterations, the algorithm showcased a strong convergence with the optimal policy, allowing for the methodology to be used on the unrestricted problem, without incurring in simplifications such as action and state discretization.
id RCAP_1fae90ec8ca3b2c25081d969182d2faf
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/19197
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital chargeValue at riskBasel accordArtificial intelligenceDeep learningDeep reinforcement learningProximal policy optimizationIn 1995, the Basel Committee on Banking Supervision emitted an amendment to the first Basel Accord, allowing financial institutions to develop internal risk models, based on the value-at-risk (VaR), as opposed to using the regulator’s predefined model. From that point onwards, the scientific community has focused its efforts on improving the accuracy of the VaR models to reduce the capital requirements stipulated by the regulatory framework. In contrast, some authors proposed that the key towards disclosure optimization would not lie in improving the existing models, but in manipulating the estimated value. The most recent progress in this field employed dynamic programming (DP), based on Markov decision processes (MDPs), to create a daily report policy. However, the use of dynamic programming carries heavy costs for the solution; not only does the algorithm require an explicit transition probability matrix, the high computational storage requirements and inability to operate in continuous MDPs demand simplifying the problem. The purpose of this work is to introduce deep reinforcement learning as an alternative to solving problems characterized by a complex or continuous MDP. To this end, the author benchmarks the DP generated policy with one generated via proximal policy optimization. In conclusion, and despite the small number of employed learning iterations, the algorithm showcased a strong convergence with the optimal policy, allowing for the methodology to be used on the unrestricted problem, without incurring in simplifications such as action and state discretization.Em 1995 foi emitida uma adenda ao Acordo de Basileia vigente, o Basileia I, que permitiu que as instituições financeiras optassem por desenvolver modelos internos de medição de risco, tendo por base o value-at-risk (VaR), ao invés de recorrer ao modelo estipulado pelo regulador. Desde então, a comunidade científica focou os seus esforços na melhoria da precisão dos modelos de VaR procurando assim reduzir os requisitos de capital definidos na regulamentação. No entanto, alguns autores propuseram que a chave para a optimização do reporte não estaria na melhoria dos modelos existentes, mas na manipulação do valor estimado. O progresso mais recente recorreu ao uso de programação dinâmica (DP), baseada em processos de decisão de Markov (MDP) para atingir este fim, criando uma regra de reporte diária. No entanto, o uso de DP acarreta custos para a solução, uma vez que por um lado, o algoritmo requer uma matriz de probabilidades de transição definida, e por outro, os elevados requisitos de armazenamento computacional e incapacidade de lidar com processos de decisão de Markov (MDP) contínuos, exigem a simplificação do problema em questão. Este trabalho visa introduzir "deep reinforcement learning" como uma alternativa a problemas caracterizados por um MDP contínuo ou complexo. Para o efeito, é realizado um "benchmarking" com a "policy" criada por programação dinâmica, recorrendo ao algoritmo "proximal policy optimization". Em suma, e apesar do reduzido montante de iterações empregue, o algoritmo demonstrou fortes capacidades de convergência com a solução óptima, podendo ser empregue na estimativa do problema sem incorrer em simplificações.2019-12-17T12:22:46Z2019-11-12T00:00:00Z2019-11-122019-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/19197TID:202322521engBanhudo, Guilherme Sousa Falcão Duarteinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:35:02Zoai:repositorio.iscte-iul.pt:10071/19197Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:01:22.798880Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
title Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
spellingShingle Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
Banhudo, Guilherme Sousa Falcão Duarte
Value at risk
Basel accord
Artificial intelligence
Deep learning
Deep reinforcement learning
Proximal policy optimization
title_short Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
title_full Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
title_fullStr Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
title_full_unstemmed Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
title_sort Adaptive value-at-risk policy optimization: a deep reinforcement learning approach for minimizing the capital charge
author Banhudo, Guilherme Sousa Falcão Duarte
author_facet Banhudo, Guilherme Sousa Falcão Duarte
author_role author
dc.contributor.author.fl_str_mv Banhudo, Guilherme Sousa Falcão Duarte
dc.subject.por.fl_str_mv Value at risk
Basel accord
Artificial intelligence
Deep learning
Deep reinforcement learning
Proximal policy optimization
topic Value at risk
Basel accord
Artificial intelligence
Deep learning
Deep reinforcement learning
Proximal policy optimization
description In 1995, the Basel Committee on Banking Supervision emitted an amendment to the first Basel Accord, allowing financial institutions to develop internal risk models, based on the value-at-risk (VaR), as opposed to using the regulator’s predefined model. From that point onwards, the scientific community has focused its efforts on improving the accuracy of the VaR models to reduce the capital requirements stipulated by the regulatory framework. In contrast, some authors proposed that the key towards disclosure optimization would not lie in improving the existing models, but in manipulating the estimated value. The most recent progress in this field employed dynamic programming (DP), based on Markov decision processes (MDPs), to create a daily report policy. However, the use of dynamic programming carries heavy costs for the solution; not only does the algorithm require an explicit transition probability matrix, the high computational storage requirements and inability to operate in continuous MDPs demand simplifying the problem. The purpose of this work is to introduce deep reinforcement learning as an alternative to solving problems characterized by a complex or continuous MDP. To this end, the author benchmarks the DP generated policy with one generated via proximal policy optimization. In conclusion, and despite the small number of employed learning iterations, the algorithm showcased a strong convergence with the optimal policy, allowing for the methodology to be used on the unrestricted problem, without incurring in simplifications such as action and state discretization.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-17T12:22:46Z
2019-11-12T00:00:00Z
2019-11-12
2019-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/19197
TID:202322521
url http://hdl.handle.net/10071/19197
identifier_str_mv TID:202322521
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597136907796480