Gyroharmonic Analysis on Relativistic Gyrogroups
Main Author: | |
---|---|
Publication Date: | 2016 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.8/3805 |
Summary: | Einstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis. |
id |
RCAP_1dc193e944e697eb2b03cdb1771eb65a |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/3805 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Gyroharmonic Analysis on Relativistic GyrogroupsGyrogroupsGyroharmonic analysisLaplace Beltrami operatorEigenfunctionsGeneralized Helgason-Fourier transformPlancherel’s theoremEinstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.University of KashanRepositório IC-OnlineFerreira, Milton2019-02-06T17:27:47Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3805eng2538-36392476-496510.22052/MIR.2016.13908info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:08:46Zoai:iconline.ipleiria.pt:10400.8/3805Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:48:10.721460Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Gyroharmonic Analysis on Relativistic Gyrogroups |
title |
Gyroharmonic Analysis on Relativistic Gyrogroups |
spellingShingle |
Gyroharmonic Analysis on Relativistic Gyrogroups Ferreira, Milton Gyrogroups Gyroharmonic analysis Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel’s theorem |
title_short |
Gyroharmonic Analysis on Relativistic Gyrogroups |
title_full |
Gyroharmonic Analysis on Relativistic Gyrogroups |
title_fullStr |
Gyroharmonic Analysis on Relativistic Gyrogroups |
title_full_unstemmed |
Gyroharmonic Analysis on Relativistic Gyrogroups |
title_sort |
Gyroharmonic Analysis on Relativistic Gyrogroups |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório IC-Online |
dc.contributor.author.fl_str_mv |
Ferreira, Milton |
dc.subject.por.fl_str_mv |
Gyrogroups Gyroharmonic analysis Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel’s theorem |
topic |
Gyrogroups Gyroharmonic analysis Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel’s theorem |
description |
Einstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2019-02-06T17:27:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/3805 |
url |
http://hdl.handle.net/10400.8/3805 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2538-3639 2476-4965 10.22052/MIR.2016.13908 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
University of Kashan |
publisher.none.fl_str_mv |
University of Kashan |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598878197219328 |