Gyroharmonic Analysis on Relativistic Gyrogroups

Bibliographic Details
Main Author: Ferreira, Milton
Publication Date: 2016
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.8/3805
Summary: Einstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
id RCAP_1dc193e944e697eb2b03cdb1771eb65a
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/3805
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Gyroharmonic Analysis on Relativistic GyrogroupsGyrogroupsGyroharmonic analysisLaplace Beltrami operatorEigenfunctionsGeneralized Helgason-Fourier transformPlancherel’s theoremEinstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.University of KashanRepositório IC-OnlineFerreira, Milton2019-02-06T17:27:47Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3805eng2538-36392476-496510.22052/MIR.2016.13908info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T15:08:46Zoai:iconline.ipleiria.pt:10400.8/3805Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:48:10.721460Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Gyroharmonic Analysis on Relativistic Gyrogroups
title Gyroharmonic Analysis on Relativistic Gyrogroups
spellingShingle Gyroharmonic Analysis on Relativistic Gyrogroups
Ferreira, Milton
Gyrogroups
Gyroharmonic analysis
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel’s theorem
title_short Gyroharmonic Analysis on Relativistic Gyrogroups
title_full Gyroharmonic Analysis on Relativistic Gyrogroups
title_fullStr Gyroharmonic Analysis on Relativistic Gyrogroups
title_full_unstemmed Gyroharmonic Analysis on Relativistic Gyrogroups
title_sort Gyroharmonic Analysis on Relativistic Gyrogroups
author Ferreira, Milton
author_facet Ferreira, Milton
author_role author
dc.contributor.none.fl_str_mv Repositório IC-Online
dc.contributor.author.fl_str_mv Ferreira, Milton
dc.subject.por.fl_str_mv Gyrogroups
Gyroharmonic analysis
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel’s theorem
topic Gyrogroups
Gyroharmonic analysis
Laplace Beltrami operator
Eigenfunctions
Generalized Helgason-Fourier transform
Plancherel’s theorem
description Einstein, Möbius, and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $\bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis. Although there is an algebraic gyro-isomorphism between the three models we show that there are some differences between them. Our study focus on the translation and convolution operators, eigenfunctions of the Laplace-Beltrami operator, Poisson transform, Fourier-Helgason transform, its inverse, and Plancherel's Theorem. We show that in the limit of large $t,$ $t \rightarrow +\infty,$ the resulting gyroharmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2019-02-06T17:27:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/3805
url http://hdl.handle.net/10400.8/3805
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2538-3639
2476-4965
10.22052/MIR.2016.13908
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Kashan
publisher.none.fl_str_mv University of Kashan
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598878197219328