Export Ready — 

How to apply nonlinear subspace techniques to univariate biomedical tim e series

Bibliographic Details
Main Author: Teixeira, Ana
Publication Date: 2009
Other Authors: Tomé, A. M., Böhm, M., Puntonet, Carlos G., Lang, Elmar W.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/47383
Summary: In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.
id RCAP_1b929ea5707e44e366142bcf688eedcb
oai_identifier_str oai:comum.rcaap.pt:10400.26/47383
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling How to apply nonlinear subspace techniques to univariate biomedical tim e seriesElectroencephalogram (EEG)electrooculogram (EOG)kernel principal component analysis (KPCA)local singular spectrum analysis (SSA)removing artifactssubspace techniques.In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.[Institute of Electrical and Electronics Engineers]Repositório ComumTeixeira, AnaTomé, A. M.Böhm, M.Puntonet, Carlos G.Lang, Elmar W.2023-10-23T09:10:09Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47383enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:25:20Zoai:comum.rcaap.pt:10400.26/47383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:45:28.108024Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv How to apply nonlinear subspace techniques to univariate biomedical tim e series
title How to apply nonlinear subspace techniques to univariate biomedical tim e series
spellingShingle How to apply nonlinear subspace techniques to univariate biomedical tim e series
Teixeira, Ana
Electroencephalogram (EEG)
electrooculogram (EOG)
kernel principal component analysis (KPCA)
local singular spectrum analysis (SSA)
removing artifacts
subspace techniques.
title_short How to apply nonlinear subspace techniques to univariate biomedical tim e series
title_full How to apply nonlinear subspace techniques to univariate biomedical tim e series
title_fullStr How to apply nonlinear subspace techniques to univariate biomedical tim e series
title_full_unstemmed How to apply nonlinear subspace techniques to univariate biomedical tim e series
title_sort How to apply nonlinear subspace techniques to univariate biomedical tim e series
author Teixeira, Ana
author_facet Teixeira, Ana
Tomé, A. M.
Böhm, M.
Puntonet, Carlos G.
Lang, Elmar W.
author_role author
author2 Tomé, A. M.
Böhm, M.
Puntonet, Carlos G.
Lang, Elmar W.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Teixeira, Ana
Tomé, A. M.
Böhm, M.
Puntonet, Carlos G.
Lang, Elmar W.
dc.subject.por.fl_str_mv Electroencephalogram (EEG)
electrooculogram (EOG)
kernel principal component analysis (KPCA)
local singular spectrum analysis (SSA)
removing artifacts
subspace techniques.
topic Electroencephalogram (EEG)
electrooculogram (EOG)
kernel principal component analysis (KPCA)
local singular spectrum analysis (SSA)
removing artifacts
subspace techniques.
description In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
2023-10-23T09:10:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47383
url http://hdl.handle.net/10400.26/47383
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv [Institute of Electrical and Electronics Engineers]
publisher.none.fl_str_mv [Institute of Electrical and Electronics Engineers]
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602776013209600