How to apply nonlinear subspace techniques to univariate biomedical tim e series
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.26/47383 |
Summary: | In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed. |
id |
RCAP_1b929ea5707e44e366142bcf688eedcb |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47383 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
How to apply nonlinear subspace techniques to univariate biomedical tim e seriesElectroencephalogram (EEG)electrooculogram (EOG)kernel principal component analysis (KPCA)local singular spectrum analysis (SSA)removing artifactssubspace techniques.In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.[Institute of Electrical and Electronics Engineers]Repositório ComumTeixeira, AnaTomé, A. M.Böhm, M.Puntonet, Carlos G.Lang, Elmar W.2023-10-23T09:10:09Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47383enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:25:20Zoai:comum.rcaap.pt:10400.26/47383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:45:28.108024Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
spellingShingle |
How to apply nonlinear subspace techniques to univariate biomedical tim e series Teixeira, Ana Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
title_short |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_full |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_fullStr |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_full_unstemmed |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_sort |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
author |
Teixeira, Ana |
author_facet |
Teixeira, Ana Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
author_role |
author |
author2 |
Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Teixeira, Ana Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
dc.subject.por.fl_str_mv |
Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
topic |
Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
description |
In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2023-10-23T09:10:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47383 |
url |
http://hdl.handle.net/10400.26/47383 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
[Institute of Electrical and Electronics Engineers] |
publisher.none.fl_str_mv |
[Institute of Electrical and Electronics Engineers] |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602776013209600 |