Artificial Intelligence and Ultrasonography
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Article |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.24950/rspmi.2585 |
Summary: | Artificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities. |
id |
RCAP_13106f50d0e0940038d84b71966dd445 |
---|---|
oai_identifier_str |
oai:oai.revista.spmi.pt:article/2585 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Artificial Intelligence and UltrasonographyInteligência Artificial e UltrassonografiaAprendizagem AutomáticaAprendizagem ProfundaEcografiaInteligência ArtificialMedicina InternaSistemas Point-of-CareArtificial IntelligenceDeep LearningInternal MedicineMachine LearningPoint-of-Care SystemsUltrasonographyArtificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities.A inteligência artificial (IA) e os seus muitos pseudónimos, incluindo a aprendizagem automática, a aprendizagem profunda e os grandes volumes de dados, invadiram a medicina moderna, afetando a maioria dos aspetos da prática moderna. Um dos mais controversos e potencialmente impactantes é a utilização da inteligência artificial na imagiologia médica. Embora a maior parte da atenção comercial e académica se tenha centrado em modalidades de imagiologia de custo mais elevado, como a ressonância magnética (RM) e a tomografia computorizada (TC), os ultrassons também se tornaram o alvo dos criadores de aplicações de IA. O ultrassom apresenta barreiras adicionais ao desenvolvimento e execução de aplicações de IA, não observadas na imagiologia axial, como a RM e a TC. A ecografia point-of-care (POCUS), com a sua falta de normalização e a multiplicidade de utilizadores inexperientes, representa o maior desafio de imagiologia para a IA. No entanto, a POCUS também é a chave para o acesso generalizado ao diagnóstico e à ultrassonografia intervencionista à beira do leito do paciente em todo o mundo. Este artigo discute a IA, sua utilização em POCUS, desafios atuais, riscos, limitações, necessidades e possibilidades futuras.Sociedade Portuguesa de Medicina Interna2024-05-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.24950/rspmi.2585https://doi.org/10.24950/rspmi.2585Internal Medicine; Vol. 31 No. 1 - Edição Especial (2024): Medicina Digital; 20-28Medicina Interna; Vol. 31 N.º 1 - Edição Especial (2024): Medicina Digital; 20-282183-99800872-671Xreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPporhttps://revista.spmi.pt/index.php/rpmi/article/view/2585https://revista.spmi.pt/index.php/rpmi/article/view/2585/1875Direitos de Autor (c) 2024 Medicina Internainfo:eu-repo/semantics/openAccessBlaivas, Michael2024-05-18T07:29:01Zoai:oai.revista.spmi.pt:article/2585Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:36:49.104705Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Artificial Intelligence and Ultrasonography Inteligência Artificial e Ultrassonografia |
title |
Artificial Intelligence and Ultrasonography |
spellingShingle |
Artificial Intelligence and Ultrasonography Blaivas, Michael Aprendizagem Automática Aprendizagem Profunda Ecografia Inteligência Artificial Medicina Interna Sistemas Point-of-Care Artificial Intelligence Deep Learning Internal Medicine Machine Learning Point-of-Care Systems Ultrasonography |
title_short |
Artificial Intelligence and Ultrasonography |
title_full |
Artificial Intelligence and Ultrasonography |
title_fullStr |
Artificial Intelligence and Ultrasonography |
title_full_unstemmed |
Artificial Intelligence and Ultrasonography |
title_sort |
Artificial Intelligence and Ultrasonography |
author |
Blaivas, Michael |
author_facet |
Blaivas, Michael |
author_role |
author |
dc.contributor.author.fl_str_mv |
Blaivas, Michael |
dc.subject.por.fl_str_mv |
Aprendizagem Automática Aprendizagem Profunda Ecografia Inteligência Artificial Medicina Interna Sistemas Point-of-Care Artificial Intelligence Deep Learning Internal Medicine Machine Learning Point-of-Care Systems Ultrasonography |
topic |
Aprendizagem Automática Aprendizagem Profunda Ecografia Inteligência Artificial Medicina Interna Sistemas Point-of-Care Artificial Intelligence Deep Learning Internal Medicine Machine Learning Point-of-Care Systems Ultrasonography |
description |
Artificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.24950/rspmi.2585 https://doi.org/10.24950/rspmi.2585 |
url |
https://doi.org/10.24950/rspmi.2585 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revista.spmi.pt/index.php/rpmi/article/view/2585 https://revista.spmi.pt/index.php/rpmi/article/view/2585/1875 |
dc.rights.driver.fl_str_mv |
Direitos de Autor (c) 2024 Medicina Interna info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos de Autor (c) 2024 Medicina Interna |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Portuguesa de Medicina Interna |
publisher.none.fl_str_mv |
Sociedade Portuguesa de Medicina Interna |
dc.source.none.fl_str_mv |
Internal Medicine; Vol. 31 No. 1 - Edição Especial (2024): Medicina Digital; 20-28 Medicina Interna; Vol. 31 N.º 1 - Edição Especial (2024): Medicina Digital; 20-28 2183-9980 0872-671X reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596056790630400 |