Artificial Intelligence and Ultrasonography

Bibliographic Details
Main Author: Blaivas, Michael
Publication Date: 2024
Format: Article
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://doi.org/10.24950/rspmi.2585
Summary: Artificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities.
id RCAP_13106f50d0e0940038d84b71966dd445
oai_identifier_str oai:oai.revista.spmi.pt:article/2585
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Artificial Intelligence and UltrasonographyInteligência Artificial e UltrassonografiaAprendizagem AutomáticaAprendizagem ProfundaEcografiaInteligência ArtificialMedicina InternaSistemas Point-of-CareArtificial IntelligenceDeep LearningInternal MedicineMachine LearningPoint-of-Care SystemsUltrasonographyArtificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities.A inteligência artificial (IA) e os seus muitos pseudónimos, incluindo a aprendizagem automática, a aprendizagem profunda e os grandes volumes de dados, invadiram a medicina moderna, afetando a maioria dos aspetos da prática moderna. Um dos mais controversos e potencialmente impactantes é a utilização da inteligência artificial na imagiologia médica. Embora a maior parte da atenção comercial e académica se tenha centrado em modalidades de imagiologia de custo mais elevado, como a ressonância magnética (RM) e a tomografia computorizada (TC), os ultrassons também se tornaram o alvo dos criadores de aplicações de IA. O ultrassom apresenta barreiras adicionais ao desenvolvimento e execução de aplicações de IA, não observadas na imagiologia axial, como a RM e a TC. A ecografia point-of-care (POCUS), com a sua falta de normalização e a multiplicidade de utilizadores inexperientes, representa o maior desafio de imagiologia para a IA. No entanto, a POCUS também é a chave para o acesso generalizado ao diagnóstico e à ultrassonografia intervencionista à beira do leito do paciente em todo o mundo. Este artigo discute a IA, sua utilização em POCUS, desafios atuais, riscos, limitações, necessidades e possibilidades futuras.Sociedade Portuguesa de Medicina Interna2024-05-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.24950/rspmi.2585https://doi.org/10.24950/rspmi.2585Internal Medicine; Vol. 31 No. 1 - Edição Especial (2024): Medicina Digital; 20-28Medicina Interna; Vol. 31 N.º 1 - Edição Especial (2024): Medicina Digital; 20-282183-99800872-671Xreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPporhttps://revista.spmi.pt/index.php/rpmi/article/view/2585https://revista.spmi.pt/index.php/rpmi/article/view/2585/1875Direitos de Autor (c) 2024 Medicina Internainfo:eu-repo/semantics/openAccessBlaivas, Michael2024-05-18T07:29:01Zoai:oai.revista.spmi.pt:article/2585Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:36:49.104705Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Artificial Intelligence and Ultrasonography
Inteligência Artificial e Ultrassonografia
title Artificial Intelligence and Ultrasonography
spellingShingle Artificial Intelligence and Ultrasonography
Blaivas, Michael
Aprendizagem Automática
Aprendizagem Profunda
Ecografia
Inteligência Artificial
Medicina Interna
Sistemas Point-of-Care
Artificial Intelligence
Deep Learning
Internal Medicine
Machine Learning
Point-of-Care Systems
Ultrasonography
title_short Artificial Intelligence and Ultrasonography
title_full Artificial Intelligence and Ultrasonography
title_fullStr Artificial Intelligence and Ultrasonography
title_full_unstemmed Artificial Intelligence and Ultrasonography
title_sort Artificial Intelligence and Ultrasonography
author Blaivas, Michael
author_facet Blaivas, Michael
author_role author
dc.contributor.author.fl_str_mv Blaivas, Michael
dc.subject.por.fl_str_mv Aprendizagem Automática
Aprendizagem Profunda
Ecografia
Inteligência Artificial
Medicina Interna
Sistemas Point-of-Care
Artificial Intelligence
Deep Learning
Internal Medicine
Machine Learning
Point-of-Care Systems
Ultrasonography
topic Aprendizagem Automática
Aprendizagem Profunda
Ecografia
Inteligência Artificial
Medicina Interna
Sistemas Point-of-Care
Artificial Intelligence
Deep Learning
Internal Medicine
Machine Learning
Point-of-Care Systems
Ultrasonography
description Artificial intelligence (AI) and its many aliases, including machine learning, deep learning and big data, have invaded modern medicine impacting most aspects of modern practice. One of the most controversial and potentially impactful, is artificial intelligence use in medical imaging. While most commercial and academic attention has focused on higher cost imaging modalities such as magnetic imaging resonance (MRI) and computed tomography (CT), ultrasound has also become the target of AI application developers. Ultrasound presents additional barriers to AI application development and execution, not seen in axial imaging such as MRI and CT. Point-of-care ultrasound (POCUS), with its lack of standardization and plethora of inexperienced users, poses the greatest imaging challenge to AI. However, POCUS is also the key to widespread access to diagnostic and interventional ultrasound at the patient’s bedside throughout the world. This article discusses AI, it utilization in POCUS, current challenges, risks, limitations, needs and future possibilities.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.24950/rspmi.2585
https://doi.org/10.24950/rspmi.2585
url https://doi.org/10.24950/rspmi.2585
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revista.spmi.pt/index.php/rpmi/article/view/2585
https://revista.spmi.pt/index.php/rpmi/article/view/2585/1875
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2024 Medicina Interna
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2024 Medicina Interna
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Medicina Interna
publisher.none.fl_str_mv Sociedade Portuguesa de Medicina Interna
dc.source.none.fl_str_mv Internal Medicine; Vol. 31 No. 1 - Edição Especial (2024): Medicina Digital; 20-28
Medicina Interna; Vol. 31 N.º 1 - Edição Especial (2024): Medicina Digital; 20-28
2183-9980
0872-671X
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596056790630400