Application of Artificial Intelligence in Healthcare
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Other |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/166260 |
Summary: | Tavares, J. (2024). Application of Artificial Intelligence in Healthcare: The Need for More Interpretable Artificial Intelligence. Acta Medica Portuguesa, 37(6), 411-414. https://doi.org/10.20344/amp.20469 |
id |
RCAP_45f8cf5f93e1c9dbe28db9e3c00f58de |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/166260 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Application of Artificial Intelligence in HealthcareThe Need for More Interpretable Artificial IntelligenceArtificial IntelligenceDelivery of Health CareMachine LearningAprendizagem AutomáticaInteligência ArtificialPrestação de Cuidados de SaúdeMedicine(all)Tavares, J. (2024). Application of Artificial Intelligence in Healthcare: The Need for More Interpretable Artificial Intelligence. Acta Medica Portuguesa, 37(6), 411-414. https://doi.org/10.20344/amp.20469Understanding artificial intelligence (AI) and its different types is of the utmost importance for the application of this technology in healthcare. Artificial intelligence is a field of knowledge which combines computer science and advanced statistics to support problem-solving. It is divided in two sub-fields: machine learning (ML) and deep learning. The ML concept resides in the ability of using computer algorithms that have the capability to recognize patterns and efficiently learn to train the model to predict, make recommendations or find data patterns. After a sufficient number of repetitions and algorithm adjustments, the machine becomes capable to accurately predict an output. Deep learning is a newer and more complex approach of AI that uses deep neural networks. The neural network starts with an input layer that then progresses to a variable number of hidden layers. Since the algorithm uses multiple layers with deep neural networks, it can successively refine itself, without explicitly programmed directions. It is a fact that, by using deep learning, the models usually achieve higher accuracy compared with ML. Still, when using ML, it is frequently possible to better understand which are the input variables that have more influence on the output variables. In both medical and clinical practices, it is often particularly relevant to understand why an AI technique is suggesting a certain classification or direction for a certain action. Not only in healthcare but also in other fields of knowledge, explain-able AI (also called XAI) is growing its influence. The current European legal regulation, specifically the General Data Protection Regulation (GDPR), requires that automated models provide meaningful information about the rationale on how the algorithm operates. The goal of this article is not to provide an exhaustive view about all existing AI models and explainable AI, but instead to provide a summarized and easy to understand view of what should be considered when implementing AI in healthcare and in clinical practice.Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNTavares, Jorge2024-04-16T00:30:38Z2024-06-032024-06-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other5application/pdfhttp://hdl.handle.net/10362/166260eng1646-0758PURE: 88356715https://doi.org/10.20344/amp.20469info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-08T01:33:35Zoai:run.unl.pt:10362/166260Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:51:09.331477Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Application of Artificial Intelligence in Healthcare The Need for More Interpretable Artificial Intelligence |
title |
Application of Artificial Intelligence in Healthcare |
spellingShingle |
Application of Artificial Intelligence in Healthcare Tavares, Jorge Artificial Intelligence Delivery of Health Care Machine Learning Aprendizagem Automática Inteligência Artificial Prestação de Cuidados de Saúde Medicine(all) |
title_short |
Application of Artificial Intelligence in Healthcare |
title_full |
Application of Artificial Intelligence in Healthcare |
title_fullStr |
Application of Artificial Intelligence in Healthcare |
title_full_unstemmed |
Application of Artificial Intelligence in Healthcare |
title_sort |
Application of Artificial Intelligence in Healthcare |
author |
Tavares, Jorge |
author_facet |
Tavares, Jorge |
author_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Tavares, Jorge |
dc.subject.por.fl_str_mv |
Artificial Intelligence Delivery of Health Care Machine Learning Aprendizagem Automática Inteligência Artificial Prestação de Cuidados de Saúde Medicine(all) |
topic |
Artificial Intelligence Delivery of Health Care Machine Learning Aprendizagem Automática Inteligência Artificial Prestação de Cuidados de Saúde Medicine(all) |
description |
Tavares, J. (2024). Application of Artificial Intelligence in Healthcare: The Need for More Interpretable Artificial Intelligence. Acta Medica Portuguesa, 37(6), 411-414. https://doi.org/10.20344/amp.20469 |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-16T00:30:38Z 2024-06-03 2024-06-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/166260 |
url |
http://hdl.handle.net/10362/166260 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1646-0758 PURE: 88356715 https://doi.org/10.20344/amp.20469 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597012305510400 |