Random Forests for Time Series
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.57805/revstat.v21i2.400 |
Summary: | Random forests are a powerful learning algorithm. However, when dealing with time series, the time-dependent structure is lost, assuming the observations are independent. We propose some variants of random forests for time series. The idea is to replace standard bootstrap with a dependent block bootstrap to subsample time series during tree construction. We present numerical experiments on electricity load forecasting. The first, at a disaggregated level and the second at a national level focusing on atypical periods. For both, we explore a heuristic for the choice of the block size. Additional experiments with generic time series data are also available. |
id |
RCAP_0ecb189ebe150d40eb5ae8788f62037f |
---|---|
oai_identifier_str |
oai:revstat:article/400 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Random Forests for Time SeriesBlock bootstrapRandom forestsRegressionTime seriesRandom forests are a powerful learning algorithm. However, when dealing with time series, the time-dependent structure is lost, assuming the observations are independent. We propose some variants of random forests for time series. The idea is to replace standard bootstrap with a dependent block bootstrap to subsample time series during tree construction. We present numerical experiments on electricity load forecasting. The first, at a disaggregated level and the second at a national level focusing on atypical periods. For both, we explore a heuristic for the choice of the block size. Additional experiments with generic time series data are also available.Statistics Portugal2023-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v21i2.400https://doi.org/10.57805/revstat.v21i2.400REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 283–302REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 283–3022183-03711645-6726reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/400https://revstat.ine.pt/index.php/REVSTAT/article/view/400/643Copyright (c) 2021 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessGoehry, BenjaminYan , HuiGoude , YannigMassart , PascalPoggi , Jean-Michel2023-07-01T06:30:12Zoai:revstat:article/400Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:01:57.327764Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Random Forests for Time Series |
title |
Random Forests for Time Series |
spellingShingle |
Random Forests for Time Series Goehry, Benjamin Block bootstrap Random forests Regression Time series |
title_short |
Random Forests for Time Series |
title_full |
Random Forests for Time Series |
title_fullStr |
Random Forests for Time Series |
title_full_unstemmed |
Random Forests for Time Series |
title_sort |
Random Forests for Time Series |
author |
Goehry, Benjamin |
author_facet |
Goehry, Benjamin Yan , Hui Goude , Yannig Massart , Pascal Poggi , Jean-Michel |
author_role |
author |
author2 |
Yan , Hui Goude , Yannig Massart , Pascal Poggi , Jean-Michel |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Goehry, Benjamin Yan , Hui Goude , Yannig Massart , Pascal Poggi , Jean-Michel |
dc.subject.por.fl_str_mv |
Block bootstrap Random forests Regression Time series |
topic |
Block bootstrap Random forests Regression Time series |
description |
Random forests are a powerful learning algorithm. However, when dealing with time series, the time-dependent structure is lost, assuming the observations are independent. We propose some variants of random forests for time series. The idea is to replace standard bootstrap with a dependent block bootstrap to subsample time series during tree construction. We present numerical experiments on electricity load forecasting. The first, at a disaggregated level and the second at a national level focusing on atypical periods. For both, we explore a heuristic for the choice of the block size. Additional experiments with generic time series data are also available. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v21i2.400 https://doi.org/10.57805/revstat.v21i2.400 |
url |
https://doi.org/10.57805/revstat.v21i2.400 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/400 https://revstat.ine.pt/index.php/REVSTAT/article/view/400/643 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 283–302 REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 283–302 2183-0371 1645-6726 reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833591502022901761 |