A two-stage maximum entropy approach for time series regression
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/41566 |
Summary: | The maximum entropy bootstrap for time series is a technique that creates a large number of replicates, as elements of an ensemble, for inference purposes, which satisfies the ergodic and the central limit theorems. As an alternative to the use of traditional techniques, this work proposes generalized maximum entropy for the estimation of parameters in all the replicated models. An empirical application and a simulated example illustrate the advantages of this two-stage maximum entropy approach for time series regression modeling, where maximum entropy is used both in data replication and in parameter estimation. |
id |
RCAP_c5a6c457961a15ac09f712c8277d8428 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41566 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A two-stage maximum entropy approach for time series regressionBootstrapIll-conditioned modelsInfo-metricsTime series regressionThe maximum entropy bootstrap for time series is a technique that creates a large number of replicates, as elements of an ensemble, for inference purposes, which satisfies the ergodic and the central limit theorems. As an alternative to the use of traditional techniques, this work proposes generalized maximum entropy for the estimation of parameters in all the replicated models. An empirical application and a simulated example illustrate the advantages of this two-stage maximum entropy approach for time series regression modeling, where maximum entropy is used both in data replication and in parameter estimation.Taylor and Francis2024-04-17T09:36:25Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/41566eng0361-091810.1080/03610918.2022.2057540Macedo, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:55:58Zoai:ria.ua.pt:10773/41566Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:19.973086Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A two-stage maximum entropy approach for time series regression |
title |
A two-stage maximum entropy approach for time series regression |
spellingShingle |
A two-stage maximum entropy approach for time series regression Macedo, Pedro Bootstrap Ill-conditioned models Info-metrics Time series regression |
title_short |
A two-stage maximum entropy approach for time series regression |
title_full |
A two-stage maximum entropy approach for time series regression |
title_fullStr |
A two-stage maximum entropy approach for time series regression |
title_full_unstemmed |
A two-stage maximum entropy approach for time series regression |
title_sort |
A two-stage maximum entropy approach for time series regression |
author |
Macedo, Pedro |
author_facet |
Macedo, Pedro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Macedo, Pedro |
dc.subject.por.fl_str_mv |
Bootstrap Ill-conditioned models Info-metrics Time series regression |
topic |
Bootstrap Ill-conditioned models Info-metrics Time series regression |
description |
The maximum entropy bootstrap for time series is a technique that creates a large number of replicates, as elements of an ensemble, for inference purposes, which satisfies the ergodic and the central limit theorems. As an alternative to the use of traditional techniques, this work proposes generalized maximum entropy for the estimation of parameters in all the replicated models. An empirical application and a simulated example illustrate the advantages of this two-stage maximum entropy approach for time series regression modeling, where maximum entropy is used both in data replication and in parameter estimation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-17T09:36:25Z 2024-01-01T00:00:00Z 2024 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41566 |
url |
http://hdl.handle.net/10773/41566 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0361-0918 10.1080/03610918.2022.2057540 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594567880867840 |