Harmonic analysis on the proper velocity gyrogroup
Main Author: | |
---|---|
Publication Date: | 2017 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/16613 |
Summary: | In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis. |
id |
RCAP_0c3c79d6ed89014c2fef2efb83c9c450 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16613 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Harmonic analysis on the proper velocity gyrogroupPV gyrogroupLaplace Beltrami operatorEigenfunctionsGeneralized Helgason-Fourier transformPlancherel's TheoremIn this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.Duke University Press2017-01-09T18:44:31Z2017-01-01T00:00:00Z2017-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16613eng1735-8787Ferreira, Miltoninfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:59:07Zoai:ria.ua.pt:10773/16613Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:30.248922Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Harmonic analysis on the proper velocity gyrogroup |
title |
Harmonic analysis on the proper velocity gyrogroup |
spellingShingle |
Harmonic analysis on the proper velocity gyrogroup Ferreira, Milton PV gyrogroup Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel's Theorem |
title_short |
Harmonic analysis on the proper velocity gyrogroup |
title_full |
Harmonic analysis on the proper velocity gyrogroup |
title_fullStr |
Harmonic analysis on the proper velocity gyrogroup |
title_full_unstemmed |
Harmonic analysis on the proper velocity gyrogroup |
title_sort |
Harmonic analysis on the proper velocity gyrogroup |
author |
Ferreira, Milton |
author_facet |
Ferreira, Milton |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Milton |
dc.subject.por.fl_str_mv |
PV gyrogroup Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel's Theorem |
topic |
PV gyrogroup Laplace Beltrami operator Eigenfunctions Generalized Helgason-Fourier transform Plancherel's Theorem |
description |
In this paper we study harmonic analysis on the Proper Velocity (PV) gyrogroup using the gyrolanguage of analytic hyperbolic geometry. PV addition is the relativistic addition of proper velocities in special relativity and it is related with the hyperboloid model of hyperbolic geometry. The generalized harmonic analysis depends on a complex parameter $z$ and on the radius $t$ of the hyperboloid and comprises the study of the generalized translation operator, the associated convolution operator, the generalized Laplace-Beltrami operator and its eigenfunctions, the generalized Poisson transform and its inverse, the generalized Helgason-Fourier transform, its inverse and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the generalized harmonic analysis on the hyperboloid tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-09T18:44:31Z 2017-01-01T00:00:00Z 2017-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16613 |
url |
http://hdl.handle.net/10773/16613 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1735-8787 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Duke University Press |
publisher.none.fl_str_mv |
Duke University Press |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594167284989952 |