Combination of physiological signals and image processing to detect driver drowsiness and distraction

Detalhes bibliográficos
Autor(a) principal: Oliveira, Daniel Sousa
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/41661
Resumo: Over 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets.
id RCAP_0764ae7668d660d0dcf47b85ec48ca79
oai_identifier_str oai:ria.ua.pt:10773/41661
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Combination of physiological signals and image processing to detect driver drowsiness and distractionDrowsinessSecurity systemImage processingDriver monitoringPhysiological signalsDistraction detectionOver 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets.Anualmente, mais de 1,3 milhões de pessoas perdem a vida em acidentes de trânsito, deixando para trás famílias e comunidades destruídas. A segurança rodoviária passou a ser uma preocupação global, e existem agora esforços significativos direcionados para prevenir acidentes e melhorar os sistemas de transporte. Esta tese apresenta uma revisão abrangente dos sistemas atuais de monitorização de condutores, com o objetivo de aprimorar a segurança nas estradas. Este estudo baseia-se na criação de um sistema de monitorização multimodal do estado do condutor, concentrando-se na frequência cardíaca do utilizador e em algoritmos de processamento de imagens. O principal objetivo desta abordagem híbrida é desenvolver um sistema de baixo custo e não-invasivo, adequado para uma ampla gama de veículos. O trabalho realizado nesta tese envolve a integração de dados de frequência cardíaca, provenientes de um dispositivo inteligente de uso diário para monitorização do condutor. Além disso, são utilizados modelos de Machine Learning para processar as imagens provenientes de uma câmara, com o objetivo final de detetar sonolência ou distração. Este processo envolve a extração da região de interesse de cada frame, usando a mesma como entrada para um modelo de classificação do estado do condutor. A combinação dos dados fisiológicos e dos resultados do processamento do vídeo pode posteriormente ser utilizada para acionar alertas vibratórios para o condutor, que são enviados por meio do dispositivo inteligente. De forma a avaliar a fiabilidade do sistema, foram realizados vários testes. O algoritmo de extração demonstrou uma taxa de deteção bastante alta e o modelo com melhor desempenho apresentou uma eficácia aceitável. Este módulo de processamento de imagens pode ser implementado num sistema em tempo real, no entanto, o protótipo completo desenvolvido em Python não opera à velocidade necessária para ser incorporado num veículo. No geral, este trabalho tem como principal objetivo a redução de acidentes de trânsito, aumentando a segurança dos condutores. A abordagem adotada pretende ser eficaz na monitorização do estado do condutor, mas também abrangente para aplicações em diversos contextos, desde veículos individuais até frotas comerciais.2024-04-22T10:49:14Z2023-12-15T00:00:00Z2023-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41661engOliveira, Daniel Sousainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:56:01Zoai:ria.ua.pt:10773/41661Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:20.498220Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Combination of physiological signals and image processing to detect driver drowsiness and distraction
title Combination of physiological signals and image processing to detect driver drowsiness and distraction
spellingShingle Combination of physiological signals and image processing to detect driver drowsiness and distraction
Oliveira, Daniel Sousa
Drowsiness
Security system
Image processing
Driver monitoring
Physiological signals
Distraction detection
title_short Combination of physiological signals and image processing to detect driver drowsiness and distraction
title_full Combination of physiological signals and image processing to detect driver drowsiness and distraction
title_fullStr Combination of physiological signals and image processing to detect driver drowsiness and distraction
title_full_unstemmed Combination of physiological signals and image processing to detect driver drowsiness and distraction
title_sort Combination of physiological signals and image processing to detect driver drowsiness and distraction
author Oliveira, Daniel Sousa
author_facet Oliveira, Daniel Sousa
author_role author
dc.contributor.author.fl_str_mv Oliveira, Daniel Sousa
dc.subject.por.fl_str_mv Drowsiness
Security system
Image processing
Driver monitoring
Physiological signals
Distraction detection
topic Drowsiness
Security system
Image processing
Driver monitoring
Physiological signals
Distraction detection
description Over 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-15T00:00:00Z
2023-12-15
2024-04-22T10:49:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41661
url http://hdl.handle.net/10773/41661
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594567908130816