Combination of physiological signals and image processing to detect driver drowsiness and distraction
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/41661 |
Resumo: | Over 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets. |
| id |
RCAP_0764ae7668d660d0dcf47b85ec48ca79 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/41661 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Combination of physiological signals and image processing to detect driver drowsiness and distractionDrowsinessSecurity systemImage processingDriver monitoringPhysiological signalsDistraction detectionOver 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets.Anualmente, mais de 1,3 milhões de pessoas perdem a vida em acidentes de trânsito, deixando para trás famílias e comunidades destruídas. A segurança rodoviária passou a ser uma preocupação global, e existem agora esforços significativos direcionados para prevenir acidentes e melhorar os sistemas de transporte. Esta tese apresenta uma revisão abrangente dos sistemas atuais de monitorização de condutores, com o objetivo de aprimorar a segurança nas estradas. Este estudo baseia-se na criação de um sistema de monitorização multimodal do estado do condutor, concentrando-se na frequência cardíaca do utilizador e em algoritmos de processamento de imagens. O principal objetivo desta abordagem híbrida é desenvolver um sistema de baixo custo e não-invasivo, adequado para uma ampla gama de veículos. O trabalho realizado nesta tese envolve a integração de dados de frequência cardíaca, provenientes de um dispositivo inteligente de uso diário para monitorização do condutor. Além disso, são utilizados modelos de Machine Learning para processar as imagens provenientes de uma câmara, com o objetivo final de detetar sonolência ou distração. Este processo envolve a extração da região de interesse de cada frame, usando a mesma como entrada para um modelo de classificação do estado do condutor. A combinação dos dados fisiológicos e dos resultados do processamento do vídeo pode posteriormente ser utilizada para acionar alertas vibratórios para o condutor, que são enviados por meio do dispositivo inteligente. De forma a avaliar a fiabilidade do sistema, foram realizados vários testes. O algoritmo de extração demonstrou uma taxa de deteção bastante alta e o modelo com melhor desempenho apresentou uma eficácia aceitável. Este módulo de processamento de imagens pode ser implementado num sistema em tempo real, no entanto, o protótipo completo desenvolvido em Python não opera à velocidade necessária para ser incorporado num veículo. No geral, este trabalho tem como principal objetivo a redução de acidentes de trânsito, aumentando a segurança dos condutores. A abordagem adotada pretende ser eficaz na monitorização do estado do condutor, mas também abrangente para aplicações em diversos contextos, desde veículos individuais até frotas comerciais.2024-04-22T10:49:14Z2023-12-15T00:00:00Z2023-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41661engOliveira, Daniel Sousainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:56:01Zoai:ria.ua.pt:10773/41661Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:20.498220Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| title |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| spellingShingle |
Combination of physiological signals and image processing to detect driver drowsiness and distraction Oliveira, Daniel Sousa Drowsiness Security system Image processing Driver monitoring Physiological signals Distraction detection |
| title_short |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| title_full |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| title_fullStr |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| title_full_unstemmed |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| title_sort |
Combination of physiological signals and image processing to detect driver drowsiness and distraction |
| author |
Oliveira, Daniel Sousa |
| author_facet |
Oliveira, Daniel Sousa |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Oliveira, Daniel Sousa |
| dc.subject.por.fl_str_mv |
Drowsiness Security system Image processing Driver monitoring Physiological signals Distraction detection |
| topic |
Drowsiness Security system Image processing Driver monitoring Physiological signals Distraction detection |
| description |
Over 1.3 million individuals lose their lives in road accidents each year, leaving behind broken families and communities. Road safety has become a global concern, with significant efforts directed toward preventing accidents and improving transportation systems. This thesis presents a comprehensive exploration of the current driver-state monitoring systems, aiming to enhance road safety. The study delves into the creation of a multimodal driver monitoring system, focusing on the user’s heart rate and image processing techniques. Our goal with this hybrid approach is to develop a system that is cost-effective and unobtrusive, that suits a wide range of vehicles. The work developed under this thesis involves the integration of heart rate data from a consumer-grade wearable for driver monitoring. Additionally, it employs machine learning models to process collected images by an in-vehicle camera, with the ultimate goal of detecting drowsiness or distraction. This process is done by extracting the region of interest of each collected frame and then using it as input to a model that classifies the driver state, into normal, drowsy, or distracted. The combination of the physiological data and the image processing results can then be used to trigger vibratory alerts to the driver, that are sent through the wearable device. In order to assess the reliability of the system, experimental procedures were used. The best-performing model showed decent accuracy, and the face detection algorithm achieved a high detection rate. This image processing module can be implemented in a real-time system, however, the complete prototype that was developed in Python does not operate at the required speed for a real vehicle. Ultimately, this work endeavors to contribute to reducing road accidents and enhancing driver security. It aspires to provide an effective approach to driver state monitoring, with potential applications in various contexts, from individual vehicles to commercial fleets. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12-15T00:00:00Z 2023-12-15 2024-04-22T10:49:14Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41661 |
| url |
http://hdl.handle.net/10773/41661 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594567908130816 |