Export Ready — 

The effect of increasing thread depth on the initial stability of dental implants: an in vitro study

Bibliographic Details
Main Author: Cucinelli, Chiara
Publication Date: 2024
Other Authors: Pereira, Miguel Silva, Borges, Tiago, Figueiredo, Rui, Leitão-Almeida, Bruno
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.14/46886
Summary: Background: The long-term success of dental implants largely depends on achieving primary stability, previously described as crucial to obtaining osseointegration and immediate loading protocol requirements. Implant thread depths seem to be one of the key factors influencing primary stability, particularly in low-density bone. Insertion torque (IT) and resonance frequency analysis (RFA) are considered the most reliable tests to assess primary stability. The aim of this work was to evaluate how different thread depths of commercially available dental implants affect primary stability in low-density D3 bone. Materials and Methods: An in vitro study was carried out between February 2024 and March 2024. Twenty-four dental implants were divided into four groups (six implants each) according to their thread depths (Group A: 4 mm, Group B: 4.5 mm, Group C: 5 mm, Group D: 5.5 mm) and were inserted in D3-type artificial bone blocks. The main outcome variables were the IT and the Implant Stability Quotient (ISQ) measured in four different areas of the implant (buccal, lingual, mesial, and distal) with an Osstel® ISQ reader. Descriptive and inferential analyses of the data were performed, and the significance value was set at 5%. Results: A total of 24 implants were analyzed. The highest IT values were obtained in Group D, with a mean of 54.03 Ncm (standard deviation (SD) = 8.99), while the lowest measurements were observed in Group A (mean = 25.12; SD: 2.96 N.cm). The mean ISQ values were consistently higher in Group D for each analyzed area, with a mean of 70.13 N.cm (SD = 1.12). Conclusions: Taking into consideration the limitations of this in vitro study, greater thread depths seem to increase the primary stability of dental implants placed in soft bone. Furthermore, a positive correlation was observed between all IT and ISQ values, regardless of the thread depth.
id RCAP_00bb50adbcfbd7557ef6d188b39e2eb4
oai_identifier_str oai:repositorio.ucp.pt:10400.14/46886
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The effect of increasing thread depth on the initial stability of dental implants: an in vitro studyDental implantsOsseointegrationResonance frequency analysisTorqueBackground: The long-term success of dental implants largely depends on achieving primary stability, previously described as crucial to obtaining osseointegration and immediate loading protocol requirements. Implant thread depths seem to be one of the key factors influencing primary stability, particularly in low-density bone. Insertion torque (IT) and resonance frequency analysis (RFA) are considered the most reliable tests to assess primary stability. The aim of this work was to evaluate how different thread depths of commercially available dental implants affect primary stability in low-density D3 bone. Materials and Methods: An in vitro study was carried out between February 2024 and March 2024. Twenty-four dental implants were divided into four groups (six implants each) according to their thread depths (Group A: 4 mm, Group B: 4.5 mm, Group C: 5 mm, Group D: 5.5 mm) and were inserted in D3-type artificial bone blocks. The main outcome variables were the IT and the Implant Stability Quotient (ISQ) measured in four different areas of the implant (buccal, lingual, mesial, and distal) with an Osstel® ISQ reader. Descriptive and inferential analyses of the data were performed, and the significance value was set at 5%. Results: A total of 24 implants were analyzed. The highest IT values were obtained in Group D, with a mean of 54.03 Ncm (standard deviation (SD) = 8.99), while the lowest measurements were observed in Group A (mean = 25.12; SD: 2.96 N.cm). The mean ISQ values were consistently higher in Group D for each analyzed area, with a mean of 70.13 N.cm (SD = 1.12). Conclusions: Taking into consideration the limitations of this in vitro study, greater thread depths seem to increase the primary stability of dental implants placed in soft bone. Furthermore, a positive correlation was observed between all IT and ISQ values, regardless of the thread depth.VeritatiCucinelli, ChiaraPereira, Miguel SilvaBorges, TiagoFigueiredo, RuiLeitão-Almeida, Bruno2024-10-08T08:40:25Z2024-09-072024-09-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/46886eng2673-409510.3390/surgeries5030065info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T15:15:22Zoai:repositorio.ucp.pt:10400.14/46886Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:11:25.009541Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
title The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
spellingShingle The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
Cucinelli, Chiara
Dental implants
Osseointegration
Resonance frequency analysis
Torque
title_short The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
title_full The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
title_fullStr The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
title_full_unstemmed The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
title_sort The effect of increasing thread depth on the initial stability of dental implants: an in vitro study
author Cucinelli, Chiara
author_facet Cucinelli, Chiara
Pereira, Miguel Silva
Borges, Tiago
Figueiredo, Rui
Leitão-Almeida, Bruno
author_role author
author2 Pereira, Miguel Silva
Borges, Tiago
Figueiredo, Rui
Leitão-Almeida, Bruno
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Veritati
dc.contributor.author.fl_str_mv Cucinelli, Chiara
Pereira, Miguel Silva
Borges, Tiago
Figueiredo, Rui
Leitão-Almeida, Bruno
dc.subject.por.fl_str_mv Dental implants
Osseointegration
Resonance frequency analysis
Torque
topic Dental implants
Osseointegration
Resonance frequency analysis
Torque
description Background: The long-term success of dental implants largely depends on achieving primary stability, previously described as crucial to obtaining osseointegration and immediate loading protocol requirements. Implant thread depths seem to be one of the key factors influencing primary stability, particularly in low-density bone. Insertion torque (IT) and resonance frequency analysis (RFA) are considered the most reliable tests to assess primary stability. The aim of this work was to evaluate how different thread depths of commercially available dental implants affect primary stability in low-density D3 bone. Materials and Methods: An in vitro study was carried out between February 2024 and March 2024. Twenty-four dental implants were divided into four groups (six implants each) according to their thread depths (Group A: 4 mm, Group B: 4.5 mm, Group C: 5 mm, Group D: 5.5 mm) and were inserted in D3-type artificial bone blocks. The main outcome variables were the IT and the Implant Stability Quotient (ISQ) measured in four different areas of the implant (buccal, lingual, mesial, and distal) with an Osstel® ISQ reader. Descriptive and inferential analyses of the data were performed, and the significance value was set at 5%. Results: A total of 24 implants were analyzed. The highest IT values were obtained in Group D, with a mean of 54.03 Ncm (standard deviation (SD) = 8.99), while the lowest measurements were observed in Group A (mean = 25.12; SD: 2.96 N.cm). The mean ISQ values were consistently higher in Group D for each analyzed area, with a mean of 70.13 N.cm (SD = 1.12). Conclusions: Taking into consideration the limitations of this in vitro study, greater thread depths seem to increase the primary stability of dental implants placed in soft bone. Furthermore, a positive correlation was observed between all IT and ISQ values, regardless of the thread depth.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-08T08:40:25Z
2024-09-07
2024-09-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/46886
url http://hdl.handle.net/10400.14/46886
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2673-4095
10.3390/surgeries5030065
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601259547918336