Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Doctoral thesis |
Language: | por |
Source: | Repositório do Instituto Federal do Amapá (RIIFAP) |
dARK ID: | ark:/17107/001300000102z |
Download full: | http://repositorio.ifap.edu.br/handle/prefix/495 |
Summary: | The search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times. |
id |
IFAP-2_ae3fdb4bca1b998392d52bebf8bcc73d |
---|---|
oai_identifier_str |
oai:repositorio.ifap.edu.br:prefix/495 |
network_acronym_str |
IFAP-2 |
network_name_str |
Repositório do Instituto Federal do Amapá (RIIFAP) |
repository_id_str |
|
spelling |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinosBactérias celulolíticasConteúdo ruminal bovinoRumén bovinoCNPQ::ENGENHARIASThe search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times.A procura por novas fontes de matérias-primas para a produção de biocombustíveis vem sendo amplamente estudada no meio acadêmico para consolidar a matriz energética dos países com a redução da utilização das fontes fósseis. O presente trabalho objetivou prospectar bactérias celulolíticas a partir de biomassa lignocelulósica residual (Conteúdo ruminal de bovinos) com potencial aplicação na produção de etanol de segunda geração. Foi realizada inicialmente a prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos, em seguida foi quantificado a produção de celulase total (Fpase) extracelular produzida por essas bactérias em fermentação submersa em meio mineral suplementado com bagaço de cana sem tratamento hidrolítico, bem como, a caracterização e identificação dos isolados por biologia molecular. Para alcançar os objetivos propostos foi realizada o isolamento das bactérias em meio BHM com Carboximetil-celulose (CMC), sendo revelada com vermelho Congo. Após um isolado foi selecionado e empregado estratégias para aumentar a produção de celulase, para selecionar os fatores nutricionais do meio de cultivo com efeitos significativos positivos no processo de produção de celulase um delineamento Plackett-Burman e Regressão Multivariável (Stepwise) foram utilizadas. A partir da pré-seleção dos melhores parâmetros para a produção de celulase, foi realizado um estudo de otimização do processo utilizando um Delineamento Composto Central Rotacional (DCCR) e modelagem por Redes Neurais Artificiais (RNA), para identificar as melhores condições nutricionais que maximizam a produção da enzima. Foram isoladas 16 bactérias com capacidade de degradar celulose, dessas, 15 foram amplificadas no 16S rDNA e identificadas usando o banco de dados do Genbank da NCBI, resultando em cinco diferentes gêneros (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas e Klebsiella). Com produção de celulase variando de 0,34 a 0,63 FPU/mL. O isolado V13 (BR 13961) foi selecionado para o processo de otimização por estar classificado como de média eficiência. Os fatores nutricionais pré-selecionados (Ureia, KH2PO4 e extrato de levedura) apresentaram efeitos significativo positivo no processo de produção de celulase para esse isolado. A otimização por Redes Neurais apresentou um modelo matemático mais ajustado aos dados experimentais, sendo a arquitetura feed-forward com três neurônios na camada oculta, função de transferência “trainlm” e função de treinamento “radbas” apresentando aumento na produção de celulase em 2,13 vezes.BrasilPrograma de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte)IFAPInstituto Federal do AmapáGUARDA , Emerson Adrianohttps://orcid.org/0000-0003-0227-3881http://lattes.cnpq.br/9325128702126305https://orcid.org/0000-0002-2960-0638http://lattes.cnpq.br/7693622058319106SALES, Victor Hugo Gomes2021-12-05T16:19:12Z2021-12-052021-12-05T16:19:12Z2019-02-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019.http://repositorio.ifap.edu.br/handle/prefix/495ark:/17107/001300000102zporAtribuição-NãoComercial-SemDerivados 3.0 Brasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório do Instituto Federal do Amapá (RIIFAP)instname:Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)instacron:IFAP2025-08-21T21:41:03Zoai:repositorio.ifap.edu.br:prefix/495Repositório InstitucionalPUBhttp://repositorio.ifap.edu.br/oai/requestsuzana.cardoso@ifap.edu.bropendoar:2025-08-21T21:41:03Repositório do Instituto Federal do Amapá (RIIFAP) - Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)false |
dc.title.none.fl_str_mv |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
title |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
spellingShingle |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos SALES, Victor Hugo Gomes Bactérias celulolíticas Conteúdo ruminal bovino Rumén bovino CNPQ::ENGENHARIAS |
title_short |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
title_full |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
title_fullStr |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
title_full_unstemmed |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
title_sort |
Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos |
author |
SALES, Victor Hugo Gomes |
author_facet |
SALES, Victor Hugo Gomes |
author_role |
author |
dc.contributor.none.fl_str_mv |
GUARDA , Emerson Adriano https://orcid.org/0000-0003-0227-3881 http://lattes.cnpq.br/9325128702126305 https://orcid.org/0000-0002-2960-0638 http://lattes.cnpq.br/7693622058319106 |
dc.contributor.author.fl_str_mv |
SALES, Victor Hugo Gomes |
dc.subject.por.fl_str_mv |
Bactérias celulolíticas Conteúdo ruminal bovino Rumén bovino CNPQ::ENGENHARIAS |
topic |
Bactérias celulolíticas Conteúdo ruminal bovino Rumén bovino CNPQ::ENGENHARIAS |
description |
The search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-14 2021-12-05T16:19:12Z 2021-12-05 2021-12-05T16:19:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019. http://repositorio.ifap.edu.br/handle/prefix/495 |
dc.identifier.dark.fl_str_mv |
ark:/17107/001300000102z |
identifier_str_mv |
SALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019. ark:/17107/001300000102z |
url |
http://repositorio.ifap.edu.br/handle/prefix/495 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Atribuição-NãoComercial-SemDerivados 3.0 Brasil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribuição-NãoComercial-SemDerivados 3.0 Brasil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brasil Programa de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte) IFAP Instituto Federal do Amapá |
publisher.none.fl_str_mv |
Brasil Programa de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte) IFAP Instituto Federal do Amapá |
dc.source.none.fl_str_mv |
reponame:Repositório do Instituto Federal do Amapá (RIIFAP) instname:Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP) instacron:IFAP |
instname_str |
Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP) |
instacron_str |
IFAP |
institution |
IFAP |
reponame_str |
Repositório do Instituto Federal do Amapá (RIIFAP) |
collection |
Repositório do Instituto Federal do Amapá (RIIFAP) |
repository.name.fl_str_mv |
Repositório do Instituto Federal do Amapá (RIIFAP) - Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP) |
repository.mail.fl_str_mv |
suzana.cardoso@ifap.edu.br |
_version_ |
1842261869274857472 |