Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos

Bibliographic Details
Main Author: SALES, Victor Hugo Gomes
Publication Date: 2019
Format: Doctoral thesis
Language: por
Source: Repositório do Instituto Federal do Amapá (RIIFAP)
dARK ID: ark:/17107/001300000102z
Download full: http://repositorio.ifap.edu.br/handle/prefix/495
Summary: The search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times.
id IFAP-2_ae3fdb4bca1b998392d52bebf8bcc73d
oai_identifier_str oai:repositorio.ifap.edu.br:prefix/495
network_acronym_str IFAP-2
network_name_str Repositório do Instituto Federal do Amapá (RIIFAP)
repository_id_str
spelling Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinosBactérias celulolíticasConteúdo ruminal bovinoRumén bovinoCNPQ::ENGENHARIASThe search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times.A procura por novas fontes de matérias-primas para a produção de biocombustíveis vem sendo amplamente estudada no meio acadêmico para consolidar a matriz energética dos países com a redução da utilização das fontes fósseis. O presente trabalho objetivou prospectar bactérias celulolíticas a partir de biomassa lignocelulósica residual (Conteúdo ruminal de bovinos) com potencial aplicação na produção de etanol de segunda geração. Foi realizada inicialmente a prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos, em seguida foi quantificado a produção de celulase total (Fpase) extracelular produzida por essas bactérias em fermentação submersa em meio mineral suplementado com bagaço de cana sem tratamento hidrolítico, bem como, a caracterização e identificação dos isolados por biologia molecular. Para alcançar os objetivos propostos foi realizada o isolamento das bactérias em meio BHM com Carboximetil-celulose (CMC), sendo revelada com vermelho Congo. Após um isolado foi selecionado e empregado estratégias para aumentar a produção de celulase, para selecionar os fatores nutricionais do meio de cultivo com efeitos significativos positivos no processo de produção de celulase um delineamento Plackett-Burman e Regressão Multivariável (Stepwise) foram utilizadas. A partir da pré-seleção dos melhores parâmetros para a produção de celulase, foi realizado um estudo de otimização do processo utilizando um Delineamento Composto Central Rotacional (DCCR) e modelagem por Redes Neurais Artificiais (RNA), para identificar as melhores condições nutricionais que maximizam a produção da enzima. Foram isoladas 16 bactérias com capacidade de degradar celulose, dessas, 15 foram amplificadas no 16S rDNA e identificadas usando o banco de dados do Genbank da NCBI, resultando em cinco diferentes gêneros (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas e Klebsiella). Com produção de celulase variando de 0,34 a 0,63 FPU/mL. O isolado V13 (BR 13961) foi selecionado para o processo de otimização por estar classificado como de média eficiência. Os fatores nutricionais pré-selecionados (Ureia, KH2PO4 e extrato de levedura) apresentaram efeitos significativo positivo no processo de produção de celulase para esse isolado. A otimização por Redes Neurais apresentou um modelo matemático mais ajustado aos dados experimentais, sendo a arquitetura feed-forward com três neurônios na camada oculta, função de transferência “trainlm” e função de treinamento “radbas” apresentando aumento na produção de celulase em 2,13 vezes.BrasilPrograma de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte)IFAPInstituto Federal do AmapáGUARDA , Emerson Adrianohttps://orcid.org/0000-0003-0227-3881http://lattes.cnpq.br/9325128702126305https://orcid.org/0000-0002-2960-0638http://lattes.cnpq.br/7693622058319106SALES, Victor Hugo Gomes2021-12-05T16:19:12Z2021-12-052021-12-05T16:19:12Z2019-02-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019.http://repositorio.ifap.edu.br/handle/prefix/495ark:/17107/001300000102zporAtribuição-NãoComercial-SemDerivados 3.0 Brasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório do Instituto Federal do Amapá (RIIFAP)instname:Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)instacron:IFAP2025-08-21T21:41:03Zoai:repositorio.ifap.edu.br:prefix/495Repositório InstitucionalPUBhttp://repositorio.ifap.edu.br/oai/requestsuzana.cardoso@ifap.edu.bropendoar:2025-08-21T21:41:03Repositório do Instituto Federal do Amapá (RIIFAP) - Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)false
dc.title.none.fl_str_mv Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
title Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
spellingShingle Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
SALES, Victor Hugo Gomes
Bactérias celulolíticas
Conteúdo ruminal bovino
Rumén bovino
CNPQ::ENGENHARIAS
title_short Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
title_full Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
title_fullStr Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
title_full_unstemmed Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
title_sort Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos
author SALES, Victor Hugo Gomes
author_facet SALES, Victor Hugo Gomes
author_role author
dc.contributor.none.fl_str_mv GUARDA , Emerson Adriano
https://orcid.org/0000-0003-0227-3881
http://lattes.cnpq.br/9325128702126305
https://orcid.org/0000-0002-2960-0638
http://lattes.cnpq.br/7693622058319106
dc.contributor.author.fl_str_mv SALES, Victor Hugo Gomes
dc.subject.por.fl_str_mv Bactérias celulolíticas
Conteúdo ruminal bovino
Rumén bovino
CNPQ::ENGENHARIAS
topic Bactérias celulolíticas
Conteúdo ruminal bovino
Rumén bovino
CNPQ::ENGENHARIAS
description The search for new sources of raw materials for the production of biofuels has been widely studied in the academic world to consolidate the energy matrix of countries with the reduction of the use of fossil sources. The present work aimed to prospect cellulolytic bacteria from residual lignocellulosic biomass (ruminal content of cattle) with potential application in the production of second generation ethanol. Cellulolytic bacteria were prospected for ruminal bovine contents, after which the total extracellular cellulase production (Fpase) produced by these bacteria was quantified in submerged fermentation in mineral medium supplemented with sugarcane bagasse without hydrolytic treatment, as well as characterization and identification of isolates by molecular biology. In order to reach the proposed objectives, the isolation of the bacteria in BHM medium with Carboxymethylcellulose (CMC) was performed, being developed with Congo red. After an isolate was selected and employed strategies to increase cellulase production, to select the nutritional factors of the culture medium with positive effects in the cellulase production process a Plackett-Burman and Multivariable Regression (Stepwise) were used. From the pre-selection of the best parameters for the production of cellulase, a process optimization study was carried out using a Rotational Central Compound Design (DCCR) and Artificial Neural Network (RNA) modeling to identify the best nutritional conditions that maximize the production of the enzyme. Sixteen bacteria capable of degrading cellulose were isolated, 15 of which were amplified in 16S rDNA and identified using the NCBI Genbank database, resulting in five different genera (Bacillus, Ochrobactrum, Microbacterium, Stenotrophomonas and Klebsiella). With cellulase production ranging from 0.34 to 0.63 FPU / mL. Isolate V13 (BR 13961) was selected for the optimization process because it is classified as medium efficiency. The pre-selected nutritional factors (Urea, KH2PO4 and yeast extract) had significant positive effects on the cellulase production process for this isolate. The optimization by Neural Networks presented a mathematical model more adjusted to the experimental data, being the feed-forward architecture with three neurons in the hidden layer, transfer function "trainlm" and training function "radbas" presenting increase in the production of cellulase in 2.13 times.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-14
2021-12-05T16:19:12Z
2021-12-05
2021-12-05T16:19:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019.
http://repositorio.ifap.edu.br/handle/prefix/495
dc.identifier.dark.fl_str_mv ark:/17107/001300000102z
identifier_str_mv SALES, Victor Hugo Gomes. Prospecção de bactérias celulolíticas em conteúdo ruminal de bovinos. 2019. 113f. Tese (Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal) - Universidade Federal de Tocantins, Palmas, TO, 2019.
ark:/17107/001300000102z
url http://repositorio.ifap.edu.br/handle/prefix/495
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brasil
Programa de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte)
IFAP
Instituto Federal do Amapá
publisher.none.fl_str_mv Brasil
Programa de Doutorado em Biodiversiade e Biotecnologia da Amazônia Legal (Bionorte)
IFAP
Instituto Federal do Amapá
dc.source.none.fl_str_mv reponame:Repositório do Instituto Federal do Amapá (RIIFAP)
instname:Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)
instacron:IFAP
instname_str Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)
instacron_str IFAP
institution IFAP
reponame_str Repositório do Instituto Federal do Amapá (RIIFAP)
collection Repositório do Instituto Federal do Amapá (RIIFAP)
repository.name.fl_str_mv Repositório do Instituto Federal do Amapá (RIIFAP) - Instituto Federal de Educação, Ciência e Tecnologia do Amapá (IFAP)
repository.mail.fl_str_mv suzana.cardoso@ifap.edu.br
_version_ 1842261869274857472